
A Machine Learning Teaching Aid
MSc Development Project

Daryl Weir
0508104

Supervisor: Dr Simon Rogers

A dissertation submitted in part fulfilment
of the requirement of the Degree of

Master of Science at The University of Glasgow

September 2010

Abstract

The aim of this project was to develop an application to assist in teach-
ing some of the basic concepts of machine learning. This is a subject area at
the intersection of computer science and applied statistics. It offers power-
ful techniques for inferring information about huge collections of data, and
algorithms from the field are constantly being applied to new problems in a
diverse range of subject areas.

Many of the algorithms involved are quite complicated from a mathe-
matical standpoint, but lend themselves well to visualization. To this end,
the application produced by the project implements simple two dimensional
cases of a selection of these algorithms and allows users to explore them vi-
sually. In addition, it offers sophisticated features for generating data for use
with these algorithms.

The user evaluation carried out at the conclusion of the project showed a
favourable reaction to the teaching aid software. Users with machine learning
experience indicated that it represents a powerful didactic tool. It is designed
to be modular and easily extensible, so that further algorithms can be added
in the future, further increasing the usefulness of the program to students of
machine learning.

Acknowledgements

I’d like to take this opportunity to thank a number of people, without
whom this project would not have been possible.
First and foremost, thanks to my project supervisor, Simon Rogers, for his
invaluable assistance and insight throughout the past year.
Secondly, thanks to Clare and Amanda for keeping me sane over the course
of the MSc IT. It’s been quite a year.
Thanks also to everyone who helped test my application and provided
valuable feedback.
Last but not least, thanks to my family for supporting me through my
studies.

Daryl Weir
September 2010

i

Contents

Acknowledgements i

Table of Contents ii

1 Introduction 1

2 Problem Context 3
2.1 Implemented Algorithms . 3

2.1.1 Supervised Learning 4
2.1.2 Unsupervised Learning 8
2.1.3 Cross Validation . 9

3 Survey of Related Software 11
3.1 Machine Learning Applets . 11

3.1.1 Regression . 11
3.1.2 Classification . 12
3.1.3 Clustering . 12
3.1.4 Discussion . 13
3.1.5 Gaussian Processes . 13

3.2 Weka and Java-ML . 14
3.3 MATLAB and Octave . 14

3.3.1 MATLAB . 14
3.3.2 Octave . 15
3.3.3 JavaOctave . 15

3.4 Mathematics and Statistics Libraries 16
3.4.1 Apache Commons Math 16
3.4.2 JAMA . 16

3.5 Quadratic Programming . 17
3.5.1 LibSVM . 17
3.5.2 QuadProjJ . 17
3.5.3 New Implementation 18

ii

3.6 Plotting . 18

4 Requirements 19
4.1 Requirements Capture Process 19
4.2 Requirements Overview . 20

5 Analysis and Design 21
5.1 The Domain Model . 21

5.1.1 The data Package . 22
5.1.2 The algorithms Package 23

5.2 Graphical User Interface Design 26
5.2.1 Basic Layout . 27
5.2.2 Plotting . 29
5.2.3 The OptionPanel Class 30

5.3 Modularity . 31
5.4 Final Design . 31

6 Implementation 33
6.1 Development Method . 33
6.2 First Prototype . 34
6.3 Adding Interaction . 36

6.3.1 Datapoints and Datasets 36
6.3.2 Adding Points . 37
6.3.3 Removing Points . 39

6.4 Algorithm Implementation . 40
6.4.1 Minimized Loss . 40
6.4.2 KNN . 43
6.4.3 K Means . 43
6.4.4 SVM . 45
6.4.5 Kernel K Means . 47
6.4.6 Maximum Likelihood 48

6.5 Sampling Data . 49
6.5.1 Polynomial Sampling 49
6.5.2 Gaussian Sampling . 50
6.5.3 Polygon Sampling . 50

6.6 Data storage . 51
6.6.1 Saving/Loading Data 51
6.6.2 Example Datasets . 52
6.6.3 Exporting Images . 52

iii

7 Testing and Evaluation 53
7.1 System Testing . 53
7.2 User Evaluation . 55

7.2.1 Methodology . 55
7.2.2 Results . 56

8 Conclusion 60
8.1 Project Status . 60
8.2 Outstanding Issues . 60
8.3 Areas for Further Work . 61

A Statement of Requirements 63
A.1 Functional Requirements . 63
A.2 Non-functional Requirements 64
A.3 Use Cases . 64

B Design Documents 66

C Evaluation Documents 72
C.1 Basic Information Document 73
C.2 Task List . 74
C.3 Questionnaire . 75

D Dataset file format 77

E Contents of Accompanying CD 78

Bibliography 79

iv

Chapter 1

Introduction

The field of machine learning is a rapidly growing and increasingly important
area of computing science. As sensing technologies have improved and the
processing power of computers has continued to grow, a massive amount of
information about a vast range of phenomena has been generated. Thanks
to commensurate increases in storage capacity, retaining this data is no sig-
nificant challenge. However, analysing such a large, unwieldy collection is
extremely difficult and no traditional model exists for the task. The primary
goal of machine learning is to develop algorithms which allow information to
be inferred about the underlying behaviour of a system which has generated
a set of data. As a result, the term inference is often used interchangably
with machine learning within computing science.

Machine learning has its origins as a subfield of artificial intelligence (AI),
where it arose to fulfil the need for systems which could build functional rep-
resentations of phenomena based on observed data. Unlike pure AI research,
machine learning methodologies are not concerned with understanding the
nature of intelligence - their focus is on efficiently and accurately inferring re-
lationships, and producing concrete results. For this reason, machine learning
has grown significantly outwith the confines of artificial intelligence, and has
been successfully used to model problems in such diverse fields as computer
vision, information retrieval, biology and stock market analysis.

The subject is a fairly mathematical one, drawing many of its techniques
from applied statistics. Hence, it can be an intimidating subject to learn
for computer scientists who do not have a background in mathematics or
statistics. Machine learning models are often expressed in terms of vectors
and matrices representing the parameters, and it is not necessarily intuitive
what changing these parameters will do to the solution. However, many
machine learning concepts lend themselves very easily to visualization. For
example, a common problem in the field is regression. This seeks to model

1

the relationship between a dependent variable and one or more independent
variables. In the case where there is only one independent variable, the model
is simply a planar curve. The effect of altering the parameters can readily
be seen by observing how this curve changes.

The School of Computing Science at the University of Glasgow offers
an elective in machine learning. In the current format of this course, lab
sessions involve the use of MATLAB [16], a powerful numerical computing
environment. While it is possible to implement a wide variety of machine
learning algorithms using the MATLAB scripting language, it is often not
easy or intuitive to do so. Additionally, most students taking the course have
little to no experience of the software and so they must spend time learning
the basics of the language and following step by step examples rather than
focusing on improving their machine learning knowledge. This is not an ideal
teaching situation, particularly given that lab slots are limited.

The aim of this project was to produce a teaching aid application which
took advantage of the ease of visualization of a variety of machine learning
algorithms to allow users to experiment directly with the effects of changing
data and, where appropriate, parameters on the output of these algorithms.
The software is intended to be used in lab sessions to reinforce students’ un-
derstanding of the concepts they have already seen in lectures. The teaching
aid allows the user to plot data in two dimensional space using a variety of
techniques, and then train an algorithm on that data and observe the output.

As well as its usefulness in a lab setting, the teaching aid can also be
used in lectures to interactively demonstrate new algorithms as they are
encountered in the notes. This is more useful than a series of static slides for
demonstrating purposes, and can still be done fairly quickly. It is currently
time consuming and impractical to describe and run MATLAB scripts in the
lectures, whereas using the teaching aid the lecturer can quickly and easily
illustrate the effect of successive iterations or parameter changes in a variety
of algorithms.

The remainder of this document will discuss the development of the teach-
ing aid in detail.

2

Chapter 2

Problem Context

The teaching aid addresses the problem that there are no software products
which offer a simple and intuitive introduction to the core concepts of ma-
chine learning. Existing inference software tends to focus on algorithm imple-
mentations which are robust enough to analyze complex real world datasets.
This is by no means a bad thing, but such datasets can be difficult to visu-
alize. For example, in classification over textual documents, the number of
variables can range in the thousands. However, the same basic principles are
at work when considering the algorithm applied to data in two variables, pro-
ducing results which can readily be visualized. The teaching aid thus focuses
on simple cases of the algorithms it implements, providing intuition about
the mechanics of each algorithm. Students can take the concepts taught in
this way and generalize them to more complex problems over data from real
problems. The remainder of this chapter discusses the algorithms which are
implemented in the application.

2.1 Implemented Algorithms

There are a huge number of machine learning algorithms in the literature,
and more are being created all the time. It is impossible to demonstrate a
comprehensive range of these in a teaching aid application, particularly given
the timescale for the project. However, this enormous collection can readily
be grouped into a small set of categories. The two most important cate-
gories are the algorithms for supervised learning, and those for unsupervised
learning. For more information on these algorithms, see (for example) [22].

3

2.1.1 Supervised Learning

Supervised learning techniques are those which deduce a function given a
set of example data. These examples, commonly called the training data,
consist of input-output pairs. Given these, the supervised learner must find
a function which can make sensible output predictions both on the training
inputs, and more importantly on unseen test inputs. The supervised learning
algorithms in the teaching aid are further subdivided into two categories —
regression and classification.

Regression

Regression algorithms seek to fit a continuous function to the training data.
Generally speaking, this function can be an output based on D independent
variables, corresponding to a curve in N+1-dimensional space. The teaching
aid considers the simplest case, D = 1. Given a set of (x, t) pairs, the goal
of the regression algorithm is to model t as a function of x. The particular
class of models implemented in the application is the family of linear models,
where we seek a function of the form

t =
K∑
k=0

wkhk(x).

Here, the functions hk(x) are arbitrary functions of x and the wk are
constant parameters obtained by the algorithm. These models are linear in
the sense of the parameters – in general the functions h can be nonlinear.
In the teaching aid, the choices for the h include polynomial terms up to
8th order, sinx, and ex. Users can choose any combination of these terms,
and the teaching aid computes the optimal parameters wk based on the data
provided, and draws the corresponding curve.

The teaching aid implements two regression algorithms. The most basic
of these is the minimized loss algorithm. As its name suggests, this deter-
mines the optimal parameters by minimizing the loss — the average squared
difference between the output function and the training points. This problem
has an analytic solution. Given N points with x values x1, x2, . . . , xN and t
values t1, t2, . . . , tN , define the following matrix:

X =

h0(x1) h1(x1) . . . hK(x1)
...

...
. . .

...
h0(xN) h1(xN) . . . hK(xN)

 .
Let t = [t1, t2, . . . , tN]T and w = [w0, w1, . . . , wK]T be vectors of the training
labels and parameters respectively. Then the parameters ŵ which minimize

4

the loss are given by
ŵ = (XTX)−1XTt.

The teaching aid includes a library for manipulating matrices, and so can
compute this solution quickly then draw the corresponding curve, updating
each time new data is added.

The second regression algorithm in the teaching aid is the maximum like-
lihood method. This works by defining a probability density over the output
t. Evaluating this density at a particular training point tN produces a value
known as the likelihood of that point. The algorithm maximizes the joint
likelihood of the data — that is, the product of the likelihoods of each of
the training points. Compared to the minimized loss algorithm, this has the
advantage of taking the noise in the data into account. This provides an
estimate of the uncertainty both in the optimal parameters and in the pre-
dictions the model makes. The implementation in the teaching aid assumes
Gaussian noise in the data, which leads to exactly the same expression for the
optimal parameters as the minimized loss algorithm. However, the maximum
likelihood method also produces a value for the variance, which can be used
to draw errorbars showing the confidence of the algorithm in its predictions.
Thus, while the two algorithms produce the same curve when trained on a
given dataset, the latter provides a greater amount of useful information.

Classification

The other main supervised learning technique is classification. Rather than
fitting a continuous function to some data, the goal here is to correctly label
points as belonging to one of a number of classes. The training data consists
of input objects with several attributes, and corresponding labels for those
inputs. The classifier must find a rule for labelling new points based on their
attributes. As a real world example, the attributes might be physiological
measurements such as blood pressure and white blood cell count, and the
labels reflect whether or not a patient has a given disease. After training on
the data for a number of patients, the classifier would attempt to determine
whether a new patient has the disease. In such applications, the number of
attributes is likely to be high. For ease of visualisation, the application is
restricted to only two attributes, represented as the x1- and x2-coordinates
on the plot. The label of a point is indicated by the colour it is drawn in. The
teaching aid shows the output of a classifier by colouring the plotting space.
The plot is divided into a grid, and each square is coloured according to the
output of the classifier on its center. This allows the boundaries between
classes to be clearly seen.

5

Classification algorithms can be further subdivided into probabilistic and
non-probabilistic techniques. The former give a measure of how sure the
algorithm is about each classification, whereas the latter only makes discrete
assignments of points to classes. The teaching aid implements two classifiers,
both of which are non-probabilistic. There was insufficient development time
to add a probabilistic algorithm. For each of the implemented classifiers, the
application allows users to vary the associated parameters and observe the
effect on the classification.

The simplest classification algorithm implemented is K Nearest Neigh-
bours (KNN). Unlike most algorithms, this lacks a training phase to produce
a classification rule — only a set of data and an integer K need be provided.
To label a test point, the algorithm simply looks at the K nearest points to
it in the training set, and assigns the test point the majority label from those
K. In the case that there is no clear majority label among the K nearest
neighbours, the algorithm breaks ties randomly.

The second classifier implemented in the application is the Support Vector
Machine (SVM). This is a binary algorithm, which means it distinguishes
between only two labels on the training data. It is substantially more complex
than KNN, but in general is more powerful. The algorithm operates by
finding the hyperplane which best separates the two classes. This hyperplane
is ‘best’ in the sense that it maximizes the margin — the perpendicular
distance between the hyperplane and the nearest points on each side. As
usual, the teaching aid implements the simple two dimensional case, so that
the separating hyperplane is a straight line through the data, with equation

wTx + b = 0.

If the two possible labels for the training data are tn = ±1, it can be shown
that the problem of maximizing the margin is equivalent to minimizing

1

2
wTw,

subject to constraints
tn(wTxn + b) ≥ 1.

By introducing non-negative Lagrange multipliers αn for each training point,
this expression can again be reformulated as a maximization over α of

N∑
n=1

αn −
1

2

N∑
n,m=1

αnαmtntmxT
nxm,

6

subject to the constraints
N∑
n=1

αntn = 0

and
0 ≤ αn ≤ C

where C is a parameter which controls the sensitivity of the SVM to outliers.
This is an example of a standard class of optimization problem, the quadratic
program. There are a variety of well-known algorithms to solve quadratic
programming (QP) problems, and each problem has a single, global solution.
This is useful because the optimal decision boundary is guaranteed to be
found in all cases.

However, algorithms to solve QP problems are often inefficient and do
not scale well to large datasets. Hence, in real world problems they are in-
tractable for use in SVM problems. Platt [20] introduced a new algorithm for
training SVMs, called Sequential Minimal Optimization (SMO). The mem-
ory requirement SMO is linear in the training set size, rather than cubic for
a naive QP algorithm, and the calculations it performs have analytic solu-
tions so that it is computationally faster than a QP problem. This makes it
extremely desirable for any serious SVM implementation. The teaching aid
uses an algorithm by Keerthi et al [15] which extends the SMO algorithm to
further increase the speed of convergence. This allows the algorithm output
to be recomputed and redrawn quite quickly as new data is added.

Kernel Methods

The SVM is an example of an algorithm which can be made much more
powerful through the use of kernel methods. The algorithm, though fast,
can only find linear decision boundaries, and many datasets are not linearly
separable. However, in the optimization problem, the data only appear as
inner products xTy. These inner products can be replaced by kernel functions
k(x,y), which may be thought of as inner products in a higher dimensional
space — that is, k(x,y) = φ(xT)φ(y) for some transformation φ. This allows
the algorithm to operate in a projected space, where the data are linearly
separable, but does not require the projections to be done explicitly. Indeed,
the function φ does not even need to be known, only the kernel function k.
The SVM is still only finding a linear boundary in the projected space, but
this can correspond to a very complex decision boundary in the coordinates
of the data. Thus, the same simple algorithm can classify complex data with
a high degree of accuracy. This is a powerful advantage which costs little

7

extra from a computational standpoint, and has placed SVMs at the cutting
edge of modern machine learning problems.

Many algorithms can be kernelised — any algorithm in which the data
appear only as inner products. There are many well known kernel func-
tions which can readily be used, allowing simple algorithms to solve complex
problems. The drawback to using kernels is that they introduce additional
parameters to tune, which can significantly increase the time to find a good
model for the data. The teaching aid implements linear, Gaussian and poly-
nomial kernel functions.

2.1.2 Unsupervised Learning

In supervised learning problems, the training data consists of both input
attributes and some expected output. By contrast, training data for un-
supervised learning contains only the attributes. Unsupervised learners are
tasked with discovering how the data are organized, and identifying impor-
tant patterns in the examples.

Clustering

The principal unsupervised learning technique of interest for the teaching
aid is clustering. This involves grouping together data which are similar
in some way. For example, retailers have increasingly large collections of
information about which customers buy which products. Using clustering
they can identify customers who have similar shopping habits, or groups of
products often bought together. This can form the basis of a recommendation
system. As with other examples which have been discussed, in real usage
clustering deals with many attributes for each input object. The application
is again restricted to two attributes for easy visualisation. The assigned
cluster of a point is shown by colouring the point. Users are able to generate
data, choose a number of clusters, and step through the iterations to see how
the clusters evolve.

The teaching aid implements the K Means clustering algorithm, a simple
but effective iterative scheme. A value of K is specified, and the algorithm
assumes that there are K clusters, each represented by a mean point. These
means are initialised randomly, and then all training points are assigned to
their closest mean. The algorithm alternates between updating the means
to the average of all points assigned to them, and reassigning points to the
new means. This process continues until the assignments do not change —
convergence is guaranteed, and is usually reached in very few steps. The

8

algorithm converges to a minimum of∑
n

∑
k

znk(xn − µk)
T(xn − µk),

where znk is 1 if point n is assigned to cluster k and 0 otherwise, and µk

is the k-th mean. However, this function has multiple local minima, and
so convergence to the global minimum is not guaranteed. The algorithm is
sensitive to the initial random placement of the means. Since the algorithm is
fast, it is usually possible to overcome this problem by running it several times
with different initializations and choosing the clustering with the smallest
value of the minimized quantity.

The last algorithm implemented in the teaching aid is Kernel K Means, an
extension to the standard K Means algorithm which replaces the Euclidean
distance measure by a kernel function. This allows the algorithm to cluster
datasets whose structure cannot be captured in Euclidean space. However,
the introduction of kernels further increases the sensitivity of the algorithm
to initial conditions. Thus, the algorithm often needs to be run many times
to find the best clustering. Additionally, because the kernel algorithm is op-
erating in a transformed space for which we do not know the transformation,
the positions of the means are not known in the data’s frame. As a result,
while the standard K Means algorithm in the teaching aid is able to draw
the means explicitly as large points, the kernel version can only colour the
points to indicate cluster location.

2.1.3 Cross Validation

It is desirable to be able to compare different machine learning models against
one another. With regression and classification models, the primary goal is
to generalize the analysis of the training data to make accurate predictions
on independent test data. It does not follow that a model which describes the
training data closely will necessarily make good predictions on test points.
For example, in minimized loss regression, increasing the model complexity
by adding additional terms will always decrease the training loss, but the
more complex model might well be overfitted to the data and make poor
predictions on further data. To this end, a method for comparing the pre-
dictive performance of different models is needed — the teaching aid uses
10-fold cross validation.

Cross validation is the practice of partitioning the training data into two
sets, training the model on one and testing its performance on the other. This
process is repeated several times with different partitions, and the results
averaged to reduce the variability. In 10-fold cross validation, the data are

9

split into 10 folds of roughly equal size. The algorithm is trained on 9 of
these folds, and the predictive performance on the held out fold is recorded.
This is repeated 10 times, holding out a different fold each time, and the
predictive performance is averaged across the 10 rounds. The performance
measure used is algorithm dependent — the testing loss for the minimized
loss method, test set likelihood for the maximum likelihood, and the number
of misclassifications on the test set for the classifiers. The teaching aid carries
this process out and displays the averaged performance when the appropriate
button is pressed.

Cross validation for clustering algorithms is not included in the applica-
tion, since performance measures for clustering are application- rather than
algorithm-specific.

10

Chapter 3

Survey of Related Software

To the best of the author’s knowledge, there is no existing software which
acts as an effective machine learning teaching aid across a variety of concepts.
However, as part of the preparation for the development of the teaching aid, a
variety of software products which accomplish some similar functionality were
studied. Additionally, several software libraries were considered for inclusion
in the application in order to ease the implementation of certain features. An
analysis of the strengths and weaknesses of these products follows, together
with a description of any influence they had on the final teaching aid.

3.1 Machine Learning Applets

There are a number of interesting Java applets freely available online which
illustrate machine learning concepts. [8] provides implementations of a vari-
ety of algorithms.

3.1.1 Regression

Firstly, the author provides a simple least squares applet for linear regression.
This allows the user to plot points by clicking on the applet, and it draws
the best fitting straight line. The line updates each time a new point is
added. This ability to directly add new points is a highly useful one shared
by the other applets in the series, and this feature was incorporated into the
teaching aid.

A second applet extends the functionality of the first by additionally
plotting polynomials up to fifth order for the data the user adds. This is
implemented rather poorly, however. It plots all five polynomials simulta-
neously, and thus it is very difficult to distinguish between them. This is

11

worsened by the fact that all the curves are drawn in the same colour. The
teaching aid improves on this in its regression algorithms — the user is able
to add an arbitrary number of models, the terms for which are controlled
independently. For each model added, the colour can be chosen from a selec-
tion of four. This allows more meaningful information to be extracted from
the plot.

3.1.2 Classification

Also provided are a number of applets for classification, including one im-
plementing the K-nearest neighbours algorithm. This allows the user to plot
two types of point (crosses and circles), then shades the background to show
the boundary between the two classes. The evolution of this decision bound-
ary is intuitively clear as new points are added. However, the applet only
implements the algorithm for the case K = 1, which is a significant drawback.

The shading feature as a means of communicating the output of the clas-
sifier is a very useful one, and was adopted as part of the teaching aid.
However, the KNN implementation in the final application is significantly
more robust than the one in this applet. It allows choice between five classes
rather than two, and the value of K can be set to any natural number. This
allows the benefits and drawbacks of the algorithm to be more fully explored.

3.1.3 Clustering

Lastly, the applet suite provides an implementation of the K-means clustering
algorithm. Users are able to plot points, and the applet assigns them to the
nearest cluster and colours the background to show the current shape of
the clusters. It is a reasonably clear implementation, but suffers from the
limitation that the number of clusters is fixed at four. Also, since the display
is updated after each new point is added, the clustering is initially very
unstable. This is somewhat visually confusing to an inexperienced user, and
is not explained by the notes accompanying the applet.

Though a shading approach was found to be desirable for classification,
for clustering it is less useful. In the teaching aid, the clusters are indicated
by recolouring the points to the same colour as their means. Additionally,
any number of clusters can be specified, not just four. This allows different
clusterings to be compared against one another.

12

3.1.4 Discussion

A weakness of these applets in general is that there is no documentation
beyond a brief set of instructions for each. They assume some knowledge
of the algorithms they implement, which is a particular problem for the
K-means applet. A novice to the subject would most likely be unable to
take something meaningful from the symbols and colouring it uses. More
documentation would make a significant improvement to its usefulness. This
illustrated a need for a help system in the teaching aid, which is included in
the final product. A collection of help files documenting each algorithm and
feature of the application can be accessed at any time while using it.

The applets do have a number of positive features. First, the source code
is freely available for inspection, and is fairly well documented and designed.
This was instructive in the use of Java to implement machine learning al-
gorithms. The code was studied during the proposal phase of the product,
including the matrix implementation by the author. Though this was a use-
ful introduction, ultimately the code for the teaching aid took few ideas from
the applets. For one, the matrix implementation was not complete enough to
easily perform all the required operations, such as Cholesky decompositions.
Additionally, the drawbacks of the algorithm implementations were deemed
too significant to attempt adapting the implementations for use in the final
product.

The implementation as applets is also useful in that the software can be
distributed online very easily, and no installation or configuration is required
by users. The possibility of adapting the teaching aid into an applet was
explored during the development, but was ultimately discarded due to time
constraints. An adaptation of the software into an applet, or to run using
Java’s Web Start system, represents useful future work.

3.1.5 Gaussian Processes

Another machine learning applet is detailed in [9], which covers Gaussian
processes. This is a more polished product than the other applets which
have been discussed. It allows the user to plot some points, choose a type of
covariance function, and choose the parameters of that function. The applet
then draws the mean curve together with an indication of the variance. The
software is supported by useful documentation and plentiful links to other
information on the subject. However, the applet itself tends to be slow in
responding to user input. Since the source is not available, the reason for
this is not clear.

Gaussian Processes were not included in the teaching aid as there was

13

insufficient time to implement the algorithm. As quite a complex technique,
it was deemed too risky to implement, particularly since the algorithm is
not covered in the current machine learning course. Nonetheless, adding
functionality similar to that found in this applet would be a useful addition
in the future.

3.2 Weka and Java-ML

There are a number of Java libraries which implement machine learning algo-
rithms. Two of the most prominent are Weka [12] and Java-ML [1]. Both are
open source projects which provide powerful and robust implementations of
a wide variety of algorithms. The code is well designed and extensively doc-
umented, and thus can provide insight into writing efficient machine learning
programs. However, both are designed to be used on real world data sets and
as such provide implementations which are more complicated than strictly
necessary for the scope of this project. Their use was considered for assis-
tance with the project implementation, but ultimately it was decided that
the libraries would add significant ‘bloat’ to the application and the cost of
integrating them with the desired functionality was too high.

3.3 MATLAB and Octave

3.3.1 MATLAB

MATLAB [16] is a powerful numerical computing application, and also the
name of the scripting language used by that application. It is the current
standard for lab use in the machine learning course, as well as enjoying wides-
pead popularity in the academic and industrial communities. It provides so-
phisticated functionality for manipulating matrices and plotting data, which
may be used to implement and visualize a wide variety of machine learning
algorithms. However, despite this power, it is far from an ideal environment
for the purpose of teaching inference ideas. While it is possible to gener-
ate data using MATLAB, it is far from intuitive for a novice user to do
so, and similarly algorithm implementation can be tricky. There is a signif-
icant learning overhead associated with mastering the MATLAB scripting
language which is often a hindrance in the course lab sessions. Indeed, in
order to make progress on some of the more difficult algorithms, students are
provided with implementations and left to observe the effect of altering the
parameters. Even this is not simple – parameters must be changed in text
files and the script must be re-executed after each change to see the effect.

14

This disconnect renders the system unintuitive for illustrating the algorithm
concepts. The teaching aid application provides a continuous interaction
style which is far more intuitive to use.

3.3.2 Octave

Another main drawback of MATLAB as a teaching tool is its cost. The
software is proprietary, and individual licences for the software are very ex-
pensive, and as such it is unlikely a student will be able to afford one. Thus,
students cannot install the software on personal machines and are limited
to using MATLAB within the departmental labs. This is somewhat imprac-
tical, particularly during revision periods when students are not normally
on campus. However, this problem is partially solved by the existence of
GNU Octave [19], a free and open source numerical computing environment
which is largely interoperable with MATLAB. Distributions of the software
are available for Windows, Mac and most prominent Unix-like operating sys-
tems. Hence students can readily obtain a copy to experiment with at home.
It shares many benefits with MATLAB, but also suffers from the same draw-
backs for use as a teaching aid. Additionally, it uses a command line interface
which is less intuitive than the MATLAB GUI. Octave’s plotting capabilities
are also slightly less powerful, utilising the open source gnuplot program.

3.3.3 JavaOctave

JavaOctave [13] is a software module which allows Octave calculations to be
performed from inside a Java application. Its use as part of the teaching aid
application was initially considered, since it would potentially simplify algo-
rithm implementation by allowing reuse of scripts that were written as part
of the machine learning course. However, this would restrict the application
to use on systems where Octave was installed and it was decided that this
was a poor design choice. JavaOctave was also considered for use as part of
the development process, using calls to Octave to check the correctness of
the Java algorithm implementations. However, some initial experiments with
the software were not promising. Its syntax is quite unwieldy, and it proved
difficult to perform even simple calculations without running into frequent
error uninformative error messages. Ultimately it was decided that the cost
of learning the syntax and integrating the testing with the teaching aid would
be too high, and would produce only limited benefit. The use of the software
was thus deemed unviable.

15

3.4 Mathematics and Statistics Libraries

Much of the code for the teaching aid application involves determination of
parameters by performing operations on vectors and matrices, and the Java
class libraries do not have support for these. In order to avoid writing code
to perform basic matrix operations, which would take some time to do com-
prehensively, a number of software libraries implementing this functionality
were considered.

3.4.1 Apache Commons Math

Commons Math [2] is a library produced by the Apache Software Foundation
which provides a number of mathematical and statistical features not avail-
able in the Java platform. In particular, it provides linear algebra packages
which enable matrix operations and the solution of systems of equations.
The library also has features for random data generation in a variety of for-
mats and for statistical functions including least squares regression. These
features were certainly desirable, but the library also includes a large amount
of functionality which is outwith the scope of the project. For example, it has
classes for solving ordinary differential equations and implementing complex
numbers. In total there are over 30 packages in the library, with the source
code occupying around 6MB.

An additional point is that the code in the library is designed to be very
general, and using it as part of the teaching aid would have required data
to be stored in generic structures which are more complex than necessary
for the purposes of the application. This would have added a further cost
to integrating the library, detracting from useful development time. As with
JavaML and Weka, the library was ultimately decided to be too bloated and
complex for inclusion in the teaching aid code.

3.4.2 JAMA

JAMA [17] is a linear algebra package for Java, developed by the Mathworks
and NIST. It provides operations for constructing and manipulating real
matrices, together with functionality for solution of systems of equations and
several common matrix decompositions. The implementation is compact,
using only six classes in a single package, and the primary data structure is a
single Matrix class. It provided sufficient operations to implement all of the
algorithms in the teaching aid, and given its size was easy to integrate with
the rest of the application. Further, the classes are well designed, readable
and suitably commented, so that the implementation is easy to understand.

16

This made use of the library very simple. Hence, JAMA was used in the
application to accomplish the required mathematical functionality.

3.5 Quadratic Programming

As discussed earlier in this document, one of the more complex algorithms
in the teaching aid is the Support Vector Machine. The complexity arises
over the solution of a quadratic programming (QP) problem as part of the
algorithm. Ultimately, this problem was overcome by implementing Platt’s
SMO algorithm as an alternative to a direct QP solution. However, the
author did not discover SMO until later on in the development process. Prior
to this, a number of options were considered to act as a QP solver for the
teaching aid.

3.5.1 LibSVM

LibSVM [4] is a software library for support vector classification in general.
It provides implementations of the basic SVM classifier, as well as extensions
for regression and distribution estimation. It also supports a multi-class
extension of the SVM technique. Implementations are available in a variety of
languages, including Java. However, there were a number of reasons to avoid
using the library in the teaching aid. Firstly, the extensions it incorporates
are well beyond the scope of the project. Secondly, the Java implementation
provided is poorly laid out and difficult to read. Much of the code is organized
in a single file which contains multiple inner classes and few comments. The
algorithms used are not described well (if at all), and the time necessary
to gain an understanding of the code and integrate it with the teaching aid
would have been infeasibly long.

3.5.2 QuadProjJ

QuadProgJ [23] is a Java solver for strictly convex quadratic programming
problems. It implements the dual active-set algorithm developed by Gold-
farb and Idnani [11]. The code is clearly commented and easy to understand,
and is contained in a single class. It was a potential candidate for use dur-
ing the project, but was ultimately rejected for a number of reasons. For
one, it uses a matrix implementation from Colt [3], a mathematics library
developed at CERN which is similar in many ways to Commons Math and
so was too complex for the needs of the application. If QuadProjJ were to
be used, its implentation would have needed to be adapted to use JAMA

17

matrices. This would likely have been possible within the time allowed for
the project. However, a second concern is that the code takes in the QP
problem framed in a slightly different format to that required for the SVM,
and so a certain amount of preprocessing would have been necessary within
the teaching aid application. The combination of these factors led to the
decision that integrating QuadProjJ with the teaching aid was too expensive
in terms of development time.

3.5.3 New Implementation

The other option which saw serious consideration was to write an entirely new
QP solver. The obvious advantage was that this provided freedom to choose
the format to match the needs of the SVM algorithm. Chapter 12 of [14]
provides an extensive guide to implementing a quadratic programming solver
in Java, and would have been used as a basis for the code in the teaching aid.
However, the SMO algorithm was encountered, and is considerably easier to
implement than a QP solver, rendering this decision moot.

3.6 Plotting

Obviously, a significant part of the teaching aid application is its ability to
plot data points and curves. A number of Java libraries were considered to
assist this aspect of the functionality. These included JFreeChart [18] and the
Scientific Graphics Toolkit (SGT) [7]. These, and other libraries like them,
provide support for creating graphics in a variety of sophisticated ways. For
example, many libraries allow time series plots, bar charts and histograms
to be generated. Most of this functionality is redundant for the needs of the
project – the teaching aid is primarily concerned with simple XY plots and
with colouring the display based on a grid. The library which comes closest
to matching these requirements is the SGT, but even that provides more
than is needed.

It was therefore decided that the required plotting tools could most easily
be implemented using the core classes provided in the Java Swing library.
The plotting is all handled by a custom class which extends Java’s JPanel.

18

Chapter 4

Requirements

4.1 Requirements Capture Process

From the outset, the project had a well defined aim: design and implement
an application to teach some fundamental machine learning concepts. The
earliest part of the development process was to refine this overarching aim
into a basic set of requirements from which to build the application. The
primary stakeholder in the project is Dr Simon Rogers, as both the project
supervisor and a likely future user of the software. The largest part of the
requirements gathering process took the form of a series of meetings with
him, discussing the features that were desirable. This led to an initial list of
requirements, prioritised according to the MoSCoW method. [5]

Additionally, the survey of related software highlighted a number of useful
features which were not initially considered by the client. This was another
source of refinements to the requirements document. In particular, the ability
to add single points by clicking was not an initial requirement, but was added
to the list after it was encountered in another piece of software.

The final part of the requirements gathering process was an email sent
to the students undertaking the machine learning course in the 2009/2010
session. The students, as potential users of a teaching aid, were asked to
identify features they would find useful in such an application. Only a small
number of responses were obtained, which did not add any entirely new
requirements. The value in these responses came in identifying which algo-
rithms were most conceptually challenging, and hence should be prioritised
in the implementation.

A brief overview of the requirements obtained now follows. The full list
of requirements and a list of derived use cases are included in appendix A
of this document. However, it should be noted that some of these are left

19

purposefully general. This decision was taken in order to allow flexibility of
the precise details if any difficulties became apparent during the development
process. Indeed, the formal requirements capture phase of the project was
relatively short. This was in keeping with the chosen development model,
an agile process which attempted to avoid excessive heavyweight design and
focus instead on short, frequent iterations of design and implementation.

4.2 Requirements Overview

Starting from the basic aim of the project, two fundamental requirements
were immediately obvious. First, it must be possible to generate data, and
secondly it must be possible to run an algorithm on that data. These basic
goals were then broken down into more detailed requirements. For example,
the ability to add and remove single points directly, and to sample multi-
ple points from a given distribution, were added as extensions of the data
generation requirement.

A less critical, though still highly desirable, set of requirements arose
around the storage of data. To enable interesting cases to be easily demon-
strated, a requirement for the saving and loading of datasets was added. Ad-
ditionally, the project supervisor requested that the facility to export images
of the plot be added. This was added as “could have” under the MoSCoW
system, as the teaching aid could easily be deemed functional without it.

A small number of non-functional requirements were also identified. Fore-
most among these was that the teaching aid should be developed in Java, to
allow for easy deployment over a variety of platforms. Also, the GUI should
be designed with users who have a basic grasp of machine learning terminol-
ogy in mind. Nonetheless, it should be designed to be as usable as possible
even for novice users. Finally, algorithm implementations should be made as
efficient as possible in order to account for the possibility of large training
sets.

20

Chapter 5

Analysis and Design

The next step in the development was to analyse the requirements and prob-
lem domain to identify a class structure for the teaching aid’s core features.
Individual algorithms were not designed in detail before the implementa-
tion began. Rather, a basic framework for the model was created, covering
algorithms and data. Alongside this, a design for the key elements of the
graphical user interface (GUI) was produced.

The overall design attempted to follow a Model View Controller architec-
ture [21] — the Model is represented by the algorithm implementations, and
the View by the plotting functionality present in the GUI. There are no pure
Controller classes, however. Instead, each algorithm has an associated class
which handles both the user interface aspects of setting options for the algo-
rithm, and the logic of training the algorithm and addings its output to the
display. Thus, these classes fall somewhere between the View and Controller
roles.

A more detailed treatment of the design now follows.

5.1 The Domain Model

The domain model of the teaching aid is the part of the system which de-
scribes the machine learning entities and the relationships between them.
From studying the requirements, it was immediately clear that two of the
important objects to model were algorithms and data points. Each of these
was chosen as a candidate class. Additionally, it was clear that a collection
class for data points would be necessary — this became the Dataset class.
These three classes formed the basis for the two core domain model packages,
algorithms and data.

21

5.1.1 The data Package

Datapoints

The Datapoint class represents a single point. Each point is modelled by its
location in two dimensional space together with a label. This is not entirely
accurate to the underlying machine learning model for all algorithms. For
example, in regression a point is defined by only its x coordinate and its
label t. However, given that all plots produced by the teaching aid are in
two dimensions it seemed a good idea to have the data kept in this stan-
dard structure across all algorithms. Though those two dimensions represent
different quantities for different families of algorithm, this implementation
decision is unseen from a user’s perspective, and using a standard format
makes algorithm implementation easier.

The initial Datapoint design included a number of other features. First,
each point can have an associated error bar, represented by a boolean variable
indicating whether or not to draw the bar and a double representing the
size of the error. This was added to allow regression algorithms with a
measure of predictive uncertainty to show this uncertainty when the output
is drawn. Secondly, each point also holds a boolean indicating whether the
point is to be highlighted when drawn. This was added with the intention
of visually showing which points are support vectors for the SVM algorithm,
but algorithms added in the future could also conceivably highlight points,
hence why the feature was added to the Datapoint class rather than to the
SVM algorithm itself.

Useful methods in the class include one to determine whether a point
‘contains’ an (x, y) pair or not. This allows the teaching aid to determine
when a point has been clicked on. Also, a method was added to determine the
Euclidean distance of the point from a second point passed as a parameter.
This is useful for a variety of other features in the teaching aid, such as
finding the neighbours in the KNN algorithm.

Datasets

As well as operations on single points, it is important for the teaching aid to
be able to operate on collections of points. The Dataset class controls this
functionality. It maintains a collection of Datapoint objects, implemented
as a list since the order of points can be important — for example, when
interpolating between points to draw a line. An integer field called style

is also maintained, which describes how the dataset should be drawn. Op-
tions include discrete points, interpolation in order between the points, and
shading. This field is accessed by the GUI when a dataset is plotted.

22

The majority of methods in the class are for adding, removing and access-
ing points. Additionally, there are two noteworthy methods which should be
mentioned. The first is kNearest, which takes a Datapoint and an integer k
as parameters and returns a Dataset object containing the k nearest points
in the set. This is clearly useful for implementing the KNN algorithm, and
keeps the internal representation of a Dataset hidden from client code. The
second important method is fold. This takes an integer n as a parameter
and returns an array of n Dataset objects, each containing approximately an
n-th of the points in the dataset. The partitioning of points between folds
is random. This method is intended to simplify the implementation of cross
validation.

Sampling

One of the requirements is the ability to sample data from a given distribu-
tion. At this stage of the design, methods for doing this were not studied in
great detail. However, in order to facilitate this at a later stage, an abstract
class Sampler was added to the data package. This specifies an abstract
method, nextPoint, which returns a Datapoint. Individual samplers can
supply an implementation of this method, which can the be called by the
GUI as many times as necessary to generate the required data.

5.1.2 The algorithms Package

The Algorithm Class

The primary class in this package is Algorithm. This is an abstract class
which defines the core methods any algorithm must implement. It also defines
two fields which all algorithms require — one is the training data, a Dataset
object, and the other is a boolean variable indicating whether the output of
the algorithm should be drawn or not.

The two most important methods in Algorithm are train and predict.
The former takes in a Dataset object and trains the algorithm on the points
in the set. The latter takes a Datapoint and returns the numerical output of
the algorithm on that point. These methods represent the two fundamental
machine learning operations that the teaching aid performs.

The Algorithm class also specifies an abstract method getOutput which
is used to obtain an algorithm’s output for plotting. This method takes a
Dataset as a parameter, and returns another Dataset with the appropriate
style and values for plotting. The type of Dataset passed in and out depends
on the particular type of algorithm. For example, a regression algorithm is

23

only concerned about the x values of the points in the input set, and returns
a set of (x, y) pairs which can be interpolated to draw a curve. A classifier,
on the other hand, takes a grid of points as an input and returns the same
grid, but with the points coloured according to the output of the classifier.
This distinction led to the introduction of a further set of abstract classes
into the design.

Abstract Subclasses

The logic of plotting an algorithm’s output varies between the different fam-
ilies of algorithm — classifiers, clusterers and regression techniques — but
does not vary inside those families. For example, KNN and SVM both pro-
duce a coloured grid as their output. Thus, a second level of abstraction was
added to the design. Rather than have individual algorithms extend the Al-
gorithm class directly, three intermediary classes were identified. These are
the RegressionAlgorithm, Clusterer and Classifier classes. Each of these ex-
tends Algorithm with some new features specific to their family of methods,
but all three classes are still abstract. The actual algorithms in the teaching
aid all extend on of these classes.

There are a number of advantages to this design. First, it enables the use
of the heterogeneous list pattern. When training an algorithm, the teaching
aid need not know the specific technique it is training, and can instead call
the train method from Algorithm. On the other hand, the additional layer
of abstract classes allows enough flexibility to plot the different types of
algorithm, but is not so vague that each algorithm requires its own plotting
code. This simplifies the GUI implementation.

The RegressionAlgorithm class adds a number of features to the basic
Algorithm class. It defines eleven integer constants representing the functions
h(x) which the teaching aid recognises as valid terms in a regression problem.
The integers 0–8 represent polynomial terms from x0 up to x8, 9 represents
sinx and 10 is ex. Whether or not a given term is used by the algorithm
is governed by a boolean array terms of length eleven. If the i-th entry
of this array is true, then the function corresponding to the class constant
i is included in the regression. For example, if terms[0], terms[3] and
terms[9] are true and the remaining entries are false, the algorithm will fit
a model of the form w0 + w1x

3 + w2 sinx. This design has the advantage
that it is easily extensible through the addition of new class constants for
new functions and an increase in the length of the array.

This class also contains a variant of the getOutput method which takes
an array of doubles representing the x coordinates rather than a Dataset as
its input. While this variant is not strictly necessary it is a useful convenience

24

method — computing the output values is faster since the input does not
need to be wrapped in a Dataset.

Other fields introduced in this class include three Matrix objects named
X, t and parameters. These correspond to the matrix X and the vectors
t and w as defined in section 2.1.1. The notation for these quantities is
standard across a wide variety of linear regression techniques, so it seems
obvious to include them as instance variables.

The class Classifier adds no new fields to the basic Algorithm structure.
It does, however, add two new methods. One is classificationErrors,
which takes a Dataset and returns the number of misclassifications the al-
gorithm makes on the data. A misclassification occurs when the algorithm’s
prediction for the label on an (x1, x2) pair does not match the actual label on
the point. To make this simpler at the implementation stage, a second new
method, predictLabel, was added. This abstract method forces a classifier
to assign a label to a Datapoint. For some algorithms, such as KNN, this will
return the same result as the basic predict method, but for others the two
methods will return different numbers. For example, predict for an SVM
will return some real value on a given point, and predictLabel will assign a
label to the point based on the sign of that prediction. The decision to im-
plement predictLabel as a separate method was taken to reduce repetition
in the design. The abstraction of the label assignment means the misclassi-
fication count can be implemented at the Classifier level, rather than having
separate methods in each class which extends Classifier.

The Clusterer class adds no new instance variables or methods. Its only
purpose is to allow algorithms to be referenced as clusterers by the GUI,
without needing to know the specific algorithm.

Specific Algorithms

Individual algorithms were not designed in detail at this phase of the devel-
opment. It was decided that the framework described above was a sufficient
basis from which to start the development process. Many algorithms can
be implemented fully using only the abstract methods defined in the frame-
work. Some, particularly the clusterers, were later found to require additional
methods specific to each algorithm. However, the risk posed by designing and
implementing those methods as they were encountered in the development
process was deemed very low.

A final detail added to the design of the domain model was to add three
subpackages to the algorithms package, one for each of the main algorithm
families. This makes the structure of the domain clearer, and groups logically
related classes together. A class diagram for the domain model as of the

25

completion of the project is shown in figure 5.1.

Figure 5.1: Domain Model Class Diagram

5.2 Graphical User Interface Design

As discussed in section 3.6, the proposal phase of the project identified that
the optimal method to implement the teaching aid’s GUI was to make use of
Java’s Swing framework. This toolkit, a core Java component contained in
the javax.swing package, provides lightweight implementations of a variety
of GUI components such as buttons, panels, tables and trees. It provides a
number of flexible layout managers for controlling the appearance of an ap-
plication, and combined with the java.awt.event package offers support for
firing and handling a variety of events. It is also simple to implement a custom
component by extending a Swing class and overriding its paintComponent

method.

26

5.2.1 Basic Layout

The first step in designing the GUI was to identify the key information the
interface had to communicate, and to determine a possible layout for this
information. The important information identified was:

• The available algorithms, and the one currently selected

• Any options for configuring the selected algorithm

• Options for generating data

• Most importantly, the plot of the data and the algorithm output

The next step was to draw up a mock interface showing a possible layout
for these four items. A simple drawing of the proposed layout is shown in
figure 5.2. This is very close to the final layout of the program. A slightly
earlier version of the design had data generation as an additional option on
the list of algorithms, but on further reflection this was a poor idea. For
one thing, the number of classes allowed varies by algorithm, so a single
independent data generation feature would work poorly. Additionally, it is
useful to be able to add new data after an initial model has been trained.
Thus, the second version of the design includes an explicit area for data
generation options.

Having identified this layout, a more detailed GUI design was produced,
specifying a class structure and identifying which Swing components would
be used to implement particular sections. The classes were not designed in
precise detail at this stage — the buttons, drop down menus and so on for
specific options were left to be added at implementation time. It was more
important to capture the main interface classes and the relationships between
them.

To prevent any one class from becoming too complex, the various parts of
the functionality listed above were given their own class. The first of these is
AlgorithmPanel, a class which handles algorithm selection. Swing provides
a number of widgets which implement selection from a set of options. The
two most appropriate components are JList, which simply displays a list of
elements and allows mouse selection of the entries, and JTree, which displays
a hierarchically ordered list. The latter was chosen because the tree allows
the models to be clearly grouped together by type. The class AlgorithmPanel
extends Swing’s JPanel, a generic container class, and has a JTree field to
show the algorithms.

Data generation is handled by the class DataPanel, which also extends
JPanel. This class displays its options in two subpanels. The first controls

27

Figure 5.2: A basic interface mockup, showing the core features

the settings for the points to be added — a set of radio buttons for choosing
between the training and test data sets, a button to remove all points from
the display, and a drop down menu to choose the class. The last of these
only appears for classifiers, and the number of classes available varies as
appropriate for the selected algorithm.

The other subpanel in Datapanel provides the options for data genera-
tion. At the design stage, the full range of generation techniques was not
well defined. The initial suggestion from the project supervisor was to add
polynomial sampling. Thus, the instance variables added at this stage were
two drop down menus (JComboBox) to select the polynomial order and a
nominal value for the noise. Additionally, a text field to specify the number
of points and a button to generate the data were added to the class design.
Other types of data generation and their associated widgets were added to
the class as neessary during the implementation phase.

The interface as a whole is controlled by the class MainGUI. This extends
Swing’s JFrame, a heavyweight class which implements a window to contain
all the other GUI elements. The main responsibility of this class is to create
and layout the other panels. Additionally, it has a JMenuBar to control the
application settings which are not specific to any one algorithm. Another
important responsibility of the class is to provide the logic for loading an
algorithm. When the user selects a new algorithm from the tree, the con-

28

figuration panel for that algorithm has to be added to the display, and the
appropriate data generation options enabled. Having AlgorithmPanel han-
dles these tasks would introduce a high degree of interaction coupling into
its design and reduce the overall cohesion of the class. Thus, MainGUI has
a loadAlgorithm method which accomplishes this setup process. This is a
cleaner design, reducing the degree to which the GUI’s component classes
need reference one another.

5.2.2 Plotting

The central goal of the teaching aid is the visualization of machine learning
algorithms, and so the plotting functionality is the most important area of
the application. The design delegates all plotting tasks to the class Plotter,
another JPanel extension. Having the semantics of plotting separate from
the algorithm implementation increases the cohesion of the design, in that an
algorithm is only concerned with machine learning problems and need not be
concerned with how its output is drawn. This offers a further advantage in
that the plotting mechanism can be altered in the future without requiring
changes to the underlying algorithms.

The important fields in Plotter include a Set of Algorithm objects, a
HashMap relating double values to colours, and two Datasets — one for
the training data, and one for the test data. Maintaining a collection of
Algorithms allows multiple models to be drawn at the same time, a useful
feature for regression methods. The mapping of doubles to colours allows the
label on a Datapoint to be used to determine its colour when it is drawn. The
presence of a separate test Dataset allows the performance of a model to be
evaluated independently of its training set, an important feature since good
test predictions are the goal of the majority of machine learning techniques.

Plotter is the largest class in the teaching aid, and this was the case
from the design stage onwards. The central method is plot, which takes a
Dataset and draws its output on the screen. The same method is used for
plotting the training and test sets, and for plotting the set returned by each
algorithm’s getOutput method. Different types of dataset — points, curves
and shaded grids — are distinguished by their style field. A supplementary
method, plotErrorBar is included to draw the error bars for any points
which are flagged to show them. There is also a method to draw the axes
on the plot. These three methods were designed to be called from within
Plotter’s paintComponent method, which guarantees that all changes to the
display are made in a thread safe manner.

Plotter also has methods for converting back and forth between the coor-
dinate system used by the physical panel and the data’s frame of reference.

29

Swing components have an internal coordinate system which places the ori-
gin at the top left corner and marks coordinates in integer steps, with the
x coordinate increasing to the right and the y coordinate increasing down-
wards. This results in many points having large values, which can make
matrix inversion more computationally intensive, a potential problem for re-
gression algorithms in particular. As a result, the coordinates of the data
are transformed into the range [−10, 10] × [−10, 10] for storage. The inte-
ger coordinates are recovered through an inverse transformation when points
need to be drawn. This design has the additional advantage that resizing the
display is very simple, since the height and width of the panel can be used
dynamically in the transformation.

The final important feature of Plotter is that it implements the MouseLis-
tener interface specified by java.awt.event, allowing the panel to listen for
mouse clicks on itself. The class has a number of methods which can be
called to add and remove Datapoints when the user clicks on the plot.

5.2.3 The OptionPanel Class

Each algorithm in the teaching aid has its own particular set of configuration
options, so an all purpose class to manage the interface for these would be
a poor idea. At best such a class would be visually crowded and confusing,
and in all likelihood would be unusable. From a design and implementation
standpoint, a generic options class would have poor cohesion and would be
difficult to maintain and extend. Clearly, a stronger design is necessary.

To this end, the teaching aid has the OptionPanel class. This is a very
simple JPanel extension which acts as a placeholder for the right hand part of
the display when no algorithm is loaded. It specifies a single instance variable,
an Algorithm. The options for each individual algorithm are controlled by
a class extending OptionPanel. The base class specifies a protected method
layoutPanel which adds the introductory text to the panel, but subclasses
can override this method to layout the GUI elements they require. This de-
sign allows as much customization as needed, but does not require the rest
of the GUI to know about each of the different subclasses. In particular,
MainGUI maintains an instance variable of type OptionPanel as part of the
layout, but this can be set to any of the specific subclasses by calling the
appropriate constructor in MainGUI’s loadAlgorithm. This is a simple de-
sign, but is still flexible and easily extendable. The class OptionPanel and
its subclasses make up the gui.data subpackage.

30

5.3 Modularity

From the outset of the project, one of the design features which was deemed
most important was modularity. This refers to the ability of the teaching
aid to be easily extended to incorporate new algorithms. The motivation for
this was twofold. First, designing to ensure modularity encourages focused,
cohesive classes and a clear separation between the interface and the under-
lying models. Secondly, if another developer wishes to extend the teaching
aid in the future by adding new algorithms, a modular design clearly makes
their task simpler.

The decision to keep plotting and algorithms separate means that de-
velopers can add new algorithms without altering the existing Plotter class.
They need only implement their algorithm along with an OptionPanel sub-
class to control its settings. The steps necessary to add a new algorithm aid
are as follows:

1. Write a class to implement the algorithm, extending either Classifier,
RegressionAlgorithm or Clusterer

2. Write a control class for the algorithm, extending OptionPanel

3. Add the name of the algorithm to the JTree in the AlgorithmPanel
class (1 line of code)

4. Add code to loadAlgorithm in MainGUI to handle the specifics of
loading your algorithm (∼ 4 lines of code)

Clearly, the process is a simple one. Excluding any difficulties inherent in
implementing the algorithm, very little effort is required to integrate the new
algorithm with the teaching aid.

5.4 Final Design

During the implementation process, a number of other packages and classes
were added to the teaching aid over and above those which were designed
initially. The final package diagram, along with class diagrams for each pack-
age, are included in appendix B of this document. The interesting features
of some of the additional classes are discussed at greater length in the next
chapter. For the classes discussed in this chapter, the final designs reflect
more methods and instance variables than were mentioned in the discussion.
These represent routine implementation details which were not interesting
enough to discuss in detail here, and added nothing novel to the design. A

31

description of the purpose of each of the variables and methods in the teach-
ing aid is available in the automatically generated Javadoc, which may be
found on the accompanying CD.

32

Chapter 6

Implementation

With a strong design in place, the next phase of the project was to implement
the teaching aid. This chapter gives an overview of the implementation
process, and describes in detail some of the interesting difficulties which
arose during the development, and the corresponding solutions.

The application was written in Java, using the Eclipse IDE. It was built
and tested primarily using version 1.6.0 of Java, running on Microsoft Win-
dows Vista. Some additional testing was carried out in Ubuntu Linux, and
the weekly demonstrations of the teaching aid to the project supervisor used
Apple’s OSX. Thus the application saw use on a variety of platforms and the
core functionality worked as expected on all of them.

6.1 Development Method

The initial project proposal called for the development to be carried out ac-
cording to the Feature Driven Development (FDD) [6] model, which involves
successive iterations of design, implementation and testing to produce small
modules of code called features. This was chosen because it seemed to fit
well with the desired modular nature of the project — each algorithm is
essentially a feature.

However, due to the time constraints involved in the project, it was de-
cided that the FDD model was too granular in its definition of development
phases. It places emphasis on planning and designing on a per feature basis,
then refining the overall design model before actually writing any code for
a given feature. This seemed somewhat redundant in the case of the teach-
ing aid, because care was taken in the initial design to ensure good use of
inheritance structures so that any one algorithm implementation should re-
quire very little additional design. Therefore, the development model chosen

33

amounted to an agile development spin on the FDD model.
Each new algorithm was briefly analysed to identify the additional meth-

ods, if any, which would be required to implement the algorithm. The algo-
rithm was then immediately implemented, followed by its option controller
class. The controller classes were designed with quick sketches identifying
the buttons and other GUI elements which were necessary to control the cor-
responding algorithm. Next, the controller was integrated with the GUI —
by design, this was a very quick and easy process. Finally, the new algorithm
was tested to ensure its output was correct and there were no plotting errors.
Once it was clear that the algorithm was working as intended, development
moved on to the next feature.

6.2 First Prototype

Before implementing any algorithms, the first step of the implementation
process was to build the basic framework for the GUI. No interaction was
added at this stage. Rather, the primary concern was to get the layout
correct and add the core GUI elements. This initial prototype corresponded
to a basic implementation of the MainGUI, AlgorithmPanel, DataPanel and
OptionPanel classes. Most of this process was straightforward and did not
deviate from the design. A screenshot of the application at the end of this
phase in the development is shown in figure 6.1.

In AlgorithmPanel, the tree showing the basic algorithm types is included,
but at this stage the only explicit algorithm displayed is minimized loss. This
is because the list of algorithms had not been finalized at this point in the
development. Minimized loss was chosen as the first because it is a very
simple algorithm and would be easy to implement. The plan for adding
more algorithms was to implement one of each family as quickly as possible,
then to add as many further algorithms as the development time allowed.

The OptionPanel class contains only a label inviting the user to choose an
algorithm. Since no algorithms were coded, no child classes of OptionPanel
were added either. However, one useful feature that was added to the design
at this part of the process was placing the options in a tab pane, represented
as a JTabbedPane in the MainGUI class. This can be seen in the screenshot
as the tab with “Welcome” written on it. This was added to allow for the
possibility of multiple simultaneous models for some algorithms. Each model
can have its option panel in an individual tab. The other option considered
for multiple models was to open successive option panels in small separate
frames. This was rejected because it would add too much clutter to the screen
and would make it too easy to lose a panel behind other windows. The tab

34

Figure 6.1: Early GUI Prototype

pane approach allows many models to be controlled using a small area of
screen space, and makes switching between models clear and intuitive.

The version of Plotter implemented in the prototype was very basic. It
implemented the MouseListener interface but did nothing in response to any
MouseEvents. The only things drawn by the paintComponent method were
the axes.

The DataPanel class has a number of its key features in place in the proto-
type. The two subpanels are clearly identified and labelled. The ‘Points’ sub-
panel has two JRadioButtons to choose between training and testing points,
and a JButton to clear all points. The ‘Generate Data’ subpanel has a JCom-
boBox to select the type of model to sample from, although no options were
added to it until later. Finally, a JTextField to enter the number of points
to sample and a JButton to carry out the sampling are included.

Note that no menu bar was added to the GUI for this prototype because
the functions for the menu had not been clearly defined.

While most of the implementation up to this point was simple, a small

35

number of problems did occur. First, it was discovered that adding a JTree
object directly to the AlgorithmPanel caused strange visual effects. The
white background of the panel shrunk to match the exact size of the tree,
leaving large gaps of grey space which were visually unappealing. This prob-
lem was solved by adding the JTree to a JScrollPane, and adding that pane
to the panel as a whole. This kept the background at the full size of the
panel, as intended. This adds an additional benefit in that it allows scroll
bars to be added in the event that the tree becomes too wide to be displayed
in the allocated width.

A second problem was that laying out the component panels of the GUI
was not as simple as anticipated. Adding the component panels directly
to MainGUI was tried using a variety of Java’s available layout managers,
but it was impossible to line up the components as desired and have them
maintain their relative positions as the frame was resized. An initial solution
considered was to fix the size of the window, but this is a suboptimal solution
as users with large screens should be able to increase the size of the teaching
aid and gain a clearer view of the plot. The problem was eventually solved
through the introduction of a number of additional JPanels in MainGUI,
which were used to contain the key GUI components and allow more precise
control over the layout. This makes the layout code fairly involved and adds
a variety of instance variables which have little to do with the overall goals
of the teaching aid, but these side effects were unavoidable.

6.3 Adding Interaction

6.3.1 Datapoints and Datasets

Once the basic interface framework was ready, the next task was to add
core functionality by implementing the use cases. For this to happen, the
Datapoint and Dataset classes had to be implemented. Datapoint is a very
simple class, and none of the methods caused any implementation difficulties.
The same is largely true of Dataset, with the exception of the kNearest and
fold methods. These required additional planning to implement successfully.

The algorithm created to split a dataset into folds is shown in 6.3.1.
Essentially, the algorithm distributes the points in the dataset as evenly
as possible across the folds, then assigns any that are left over to random
folds. The order in which points are chosen to be assigned to a fold is
random. All random numbers required for the algorithm are generated by
the Random class, a part of the core java.util package. An unexpected
benefit of the decision to use a List to represent the contents of a dataset was

36

that implementing this algorithm in Java became very easy. Once the index
of the next point to be added to a fold was identified, the steps of removing
the index from the List indices and getting the corresponding Datapoint
could be carried out in a single line of code.

An initial mistake made when implementing the algorithm was to pass
the points from the main dataset to the folds by reference. Thus the same
point was referenced by both Datasets, and the original could have the state
of its points changed when this was not intended. This could occur during
cross validation, for example. To solve this problem, the Datapoint class was
altered to include a method clone which returns a new Datapoint object with
the same position and label. This is called when a point is to be assigned to
a fold.

The code for kNearest was easier to write than that for fold, but still
required some thought. The problem is that the points in the set must be
sorted in order of their distance from a test point. When sorting arrays, Java’s
default Arrays.sort method expects the objects in the array to implement
the Comparable interface, which specifies a global ordering of the members
of a class. A global ordering was no good in this instance, since the ordering
is dependent on the location of the test point, which is not known in advance.
A possible solution was to implement a sorting algorithm manually, but this
seemed wasteful. The Java API provided a better solution in the form of
a version of Arrays.sort which takes a Comparator object as a second
parameter. Comparator〈T〉 is a generic interface which specifies a single
method, the purpose of which is to compare two objects of type T based on
a given ordering. By defining a Comparator inside the body of the kNearest

method, two Datapoints from the set can be compared so that one is ‘less’
than the other if it is closer to the test point. The array of data is then sorted
using this metric, and a Dataset consisting of the first K points is returned.

6.3.2 Adding Points

The next function added was the ability to plot points directly by clicking
on the plot. This was done by overriding the mouseClicked method in the
Plotter class. This method is specified in the MouseListener interface, and is
called automatically by Java in response to the user clicking on the compo-
nent. The initial implementation simply got the location of the mouse click,
and added a Datapoint at the corresponding location in the transformed data
coordinates to the training data. To transform from the panel coordinates,
which are integers with the origin in the upper left corner, to the data co-
ordinates, a standard Cartesian system with the origin in the center of the

37

Algorithm 1 Algorithm for folding a dataset

To partition the Dataset data into an array of numFolds smaller Datasets:
Let folds be a Dataset array of length numFolds
Let n be the size of data
Let foldSize be the integer part of n divided by numFolds
if foldSize = 0 then

foldSize← 1
end if
Let indices be a list of the integers from 0 up to n− 1
Let assignments be a 2D array of size numFolds×foldSize
for i = 0 to numFolds− 1 do

for j = 0 to foldSize− 1 do
if indices is non-empty then

Remove a random element of indices into assignments[i][j]
else
assignments[i][j]← −1

end if
end for

end for
for i = 0 to numFolds− 1 do

Let folds[i] be an empty Dataset.
for j = 0 to foldSize− 1 do

Let k be the value of assignments[i][j]
if k 6= −1 then

Add the k-th point of data to folds[i]
end if

end for
end for
while indices is non-empty do

Let i be a random integer between 0 and numFolds
Let j be a random entry of indices
Add the j-th entry of data to folds[i]

end while
return folds

38

panel, the following transformations were used:

xdata =
2× XRANGE× xpanel

w
− XRANGE,

ydata = YRANGE− 2× YRANGE× ypanel
h

.

XRANGE and YRANGE are class constants for plotter which define the size of the
intervals to transform the data to. Both were initially set to 1, although later
in the development the values were changed to 10. w and h are respectively
the current width and height of the Plotter, and these values are obtained
dynamically each time the transformation method is called. Thus, when ap-
plying the inverse transformation, the points keep the same data coordinates
but their plotted locations are scaled to match the size of the plot. This
prevents any problems when resizing the window.

Actually drawing the points required the implementation of the plot

method. This is a general method for plotting any type of dataset. It de-
termines how to plot a given Dataset by switching on the style variable.
The training data were to be drawn as discrete points, so the code for plot-
ting datasets whose style was POINTWISE was added. This is accomplished
by iterating over the dataset and drawing a circle centered on each point.
Painting in Java is done using an object of the Graphics class, which has
methods for drawing assorted 2D shapes including ovals, so plotting points
was simple. The colour of a point is determined by looking up the label of
the point in the Plotter’s map of doubles to colours. The circle is filled in
this colour, and the outline is drawn in black.

It is important to be able to choose whether new points are added to the
test or training set. This is controlled by the DataPanel class, which has two
radio buttons for set choice. These radio buttons change the value of a field
called mode between the two class constants TRAIN and TEST. However, in
the initial design Plotter had no access to this information. This oversight
was corrected by adding a reference to the GUI’s DataPanel object in the
Plotter class. The Plotter can then query it to obtain the current mode, and
add new points to the correct Dataset.

Since the first algorithm to be implemented was a regression method, the
options for specifying the class of new points were not added to the GUI at
this point.

6.3.3 Removing Points

The next obvious function to add was the ability to remove points. The data
generation panel already had a button to remove all points from the display.

39

In order for this to work, the DataPanel had to know about the Plotter in
order to call its method for clearing the points. However, the Plotter already
holds a reference to the DataPanel, so this creates a cycle of references when
attempting to create the two panels as the application starts. To solve this,
the reference in Plotter was replaced with an instance variable parent of
type MainGUI. When the Plotter requires information about the DataPanel,
it can call getDataPanel from the parent object. Since such a call is only
made after all the GUI elements are set up, there is no problem with null
references.

In addition to removing all points, the requirements call for the ability
to remove individual points to investigate the effect of small changes to the
training data. The obvious method for doing this is to click on an existing
point to remove it. To accomplish this, a method was added to the Dataset
class indicating which, if any, of the points in the set ‘contain’ a mouse click,
in the sense that the click is inside the circle representing that point. This is
a slight overlap between the theoretical nature of the Dataset class and the
requirements of drawing the data, but the decision keeps the code to remove
an individual point simple.

6.4 Algorithm Implementation

With the basic GUI and the data framework in place, the next step was to
implement algorithms and their associated GUI controls, beginning with the
minimized loss method. This section contains a detailed description of the
challenges raised by this process. The algorithms are described in the order
they were implemented.

The original project proposal expected that the plotting aspects of the
GUI would be implemented separately from the algorithms. However, once
development had begun it quickly became apparent that this was an infeasible
suggestion. Creating the plotting functionality in isolation would require the
manual generation of test Datasets for drawing. This seemed an inprudent
use of the development time, so it was decided that the code for plotting a
particular type of Dataset would be implemented alongside the first algorithm
which required that plotting mode.

6.4.1 Minimized Loss

This algorithm trains by building up the matrix X and vector t as defined
in 2.1.1, then computing the optimum parameters ŵ from

ŵ = (XTX)−1XTt,

40

and the average training loss from

L =
1

N
(t−Xŵ)T(t−Xŵ).

The implementing class, MinLoss, maintains a variable holding the current
value of the training loss, as well as a method to compute the loss of the
trained model on any Dataset. All of the operations the algorithm has to
perform involve matrix calculations, and thanks to the Jama library, these
are very easy to implement. The most complex part of the code is that which
builds X according to the terms which have been enabled, and that is only
slightly involved rather than actively difficult. Once that is done, the optimal
parameters can be computed in only a few lines of code.

To plot the output of a regression method, the plot method in Plotter was
extended to include support for Dataset objects with the style INTERPOLATED.
The interpolation used is very simple, in that the code just iterates through
the Dataset and draws straight lines between successive pairs of points. When
the method is called, the teaching aid creates the array of x values to be
evaluated dynamically based on the size of the Plotter. By passing in x values
spaced two pixels apart, the resulting Datapoints are close enough that the
curve drawn appears smooth. A screenshot of the application operating in
this fashion is shown in figure 6.2

Figure 6.2 also shows the option panel for the minimized loss algorithm,
an object of the class MinLossPanel. The selection of regression terms is
controlled by a number of check boxes, which fits well with the use of booleans
to indicate the terms which are enabled. There are also buttons to train the
model and run cross validation.

The option panel has two labels which display the current training and
testing loss. Implementing these initially seemed a simple process, but a
problem emerged when testing. Each time a new training point is added
to the display, the algorithm is retrained on the modified dataset, which
changes the training loss. However, the panel is unaware of this change and
its labels are not updated. To attempt to solve this, code was added to
MinLossPanel to check the training and testing losses and set the label text
each time the panel was repainted. This was initially unsuccessful, because
only the Plotter was being marked for repainting and the labels still did
not update. The solution to this was to add a method to MainGUI which
forces all the option panels in the tab pane to repaint. Since Plotter already
has a reference to its parent MainGUI, it can call this method every time
the display is redrawn and correctly update the labels. All other algorithms
which show some performance measure on their option panel now implement
similar code to set their label text correctly before repainting.

41

Figure 6.2: The minimized loss algorithm — the output is the curve, based
on the blue points

The tab interface for adding multiple models was also implemented along-
side this algorithm, and can be seen in the figure. New models are added
by clicking the button in the rightmost tab, causing MainGUI to query the
current OptionPanel to find its constructor method, and add a new tab with
a fresh instance of the class. Removing models was a slightly more difficult
prospect. This was accomplished by adding a class TabCloser, which is a
small panel containing the name of a particular model and a button to close
it. A TabCloser is used as the component shown in the tab selector for each
model.

In the initial implementation, all models were drawn with black lines, but
this was unclear when many models were present. One solution explored was
assigning random colours to new models, but this was abandoned because the
colours generated were often unpleasant. Additionally, the random colours

42

were sometimes too similar to one another to be readily distinguished. In-
stead, a drop down menu was added to the option panel allowing the line
colour for each model to be chosen from a set selection.

6.4.2 KNN

The next algorithm implemented was K Nearest Neighbours. This posed no
significant development problems, since the kNearest method in the Dataset
class rendered the implementation almost trivial. The only setting to config-
ure on the option panel is the value of K, which is controlled with a text field.
Two labels on the panel show the misclassifications the algorithm makes on
the training and test sets.

Most of the development time for this algorithm was spent adding the
framework functions to allow classification output to be shown — namely, a
menu to choose the class of added points and the ability to plot datasets with
the SHADED style. Both were relatively simple tasks. To plot such a dataset,
the plot method in Plotter iterates over the dataset, and for each point it
gets the appropriate colour from the map and draws a square with the upper
left corner at the point in question. The size of the square is controlled by a
class constant. Increases the size improves the performance of the teaching
aid when repainting, but makes the boundary between classes less smooth.
It was found through trial and error that a good trade off between fidelity of
image and speed was achieved with a grid size of five pixels.

When the plot method is called for a Classifier, the teaching aid passes
a grid of points based on the current size of the Plotter. This grid is spaced
slightly closer together than the grid which is drawn. If this step was not
taken, the output was found to contain patterns of lines which were not
coloured correctly.

Figure 6.3 shows a screenshot of the KNN algorithm in operation.

6.4.3 K Means

The K Means algorithm was next to be implemented. As an iterative clus-
terer, the output of this method evolves over time. It is important for a
teaching tool to reflect this, allowing the user to step through the iterations.
Thus, the standard train method was not particularly useful, since the way
it is called by the GUI means it cannot easily reflect the changes over suc-
cessive iterations. Instead, two methods were added — one to assign all the
points to their closest mean, and one to update the means. The former of
these methods returns a boolean indicating whether any of the assignments

43

Figure 6.3: The KNN algorithm — the output is the shading showing the
points classified as red, blue or green

changed, which is used to check for convergence of the algorithm. The con-
troller class, KMeansPanel, has a ‘Next Iteration’ button that calls each of
these methods once when it is clicked. After some initial testing, the project
supervisor suggested the addition of a second button to jump to the solution
at convergence. This allows users to quickly test a given value of K.

The colours for the clusters were initially assigned randomly each time
the algorithm started clustering. This worked reasonably well in some cases,
but in others the colours were too similar and it was extremely difficult to
distinguish between clusters. As a compromise measure, the first five clusters
were assigned fixed colours so they could always be easily distinguished. Any
subsequent clusters are coloured randomly.

As well as training differently from other algorithms, it was found that
KNN requires a different type of output. The algorithm communicates its
output primarily by colouring the training data. The getOutput method re-
turns a dataset showing the means. This dataset has the style POINTWISE LARGE,
so the means are drawn as circles three times larger than standard points.

44

This enables them to be clearly identified as separate from the data.
The semantics of testing are not well defined for clustering in the teaching

aid. No obvious performance measure exists to evaluate on the test set, so
currently nothing is done. This is an area for future improvement to the
software.

Figure 6.4 shows the K Means algorithm in operation.

Figure 6.4: The K Means algorithm — the algorithm has found four clusters
in the data, with the means represented as large points

6.4.4 SVM

With the three basic types of algorithm represented in the teaching aid, the
development was free to choose any type of algorithm to add. The require-
ments gathering exercise suggested that students on the machine learning
course found SVM to be one of the most conceptually challenging algorithms
on the syllabus, so it was a high priority for addition. If a viable quadratic

45

programming solver had been available, it would have been fairly straight-
forward to implement an SVM, but without one the proposition was more
challenging. Thankfully, the project supervisor proposed the SMO algorithm
as a strong alternative. Implementing this algorithm required a fair amount
of work, but still less than an entirely new QP solver.

The full details of the SMO algorithm are beyond the scope of this report,
but the basic concept is that pairs of Lagrange multipliers are optimized
analytically, as opposed to the QP approach which solves numerically for all
the multipliers at once. The SMO approach thus scales much better with
the size of the training data, and in some cases has been shown to be several
orders of magnitude faster than competing algorithms. The modification
proposed by Keerthi et al [15] is what the class SVM actually implements
— this improves on several small deficiencies of the SMO technique, further
increasing the speed of convergence.

Keerthi et al suggest that the implementation should maintain five sets,
I0 to I4, which represent subsets of the αn that meet certain conditions.
However, writing the code to add and remove values from these sets seems
overly complex, particularly given that the conditions for membership of
any the sets amount to two equality tests on primitive types. Thus, the
teaching aid implementation replaces these five sets with methods which test
a given α to see if it meets the conditions for the corresponding set. This
was much simpler than implementing the sets explicitly, and would only be
significantly slower for huge datasets — much larger than the typical sets
used in the teaching aid.

SVM was the first kernel algorithm implemented, so a framework for
kernel functions was implemented alongside it. This takes the form of an
interface Kernel which specifies a method evaluate. This method takes two
points x and y and returns the kernel function k(x,y). The teaching aid
currently specifies three kernels, each represented by a class implementing
the Kernel interface. These are LinearKernel, with

k(x,y) = xTy,

GaussianKernel, with

k(x,y) = exp
[
−β(x− y)T(x− y)

]
,

and PolynomialKernel, with

k(x,y) = (1 + xTy)β.

In the Gaussian and polynomial kernels, the additional parameter β is con-
trolled by a text field in the option panel.

46

The initial implementation was producing an output successfully, but be-
haved incorrectly, producing too many support vectors. This was eventually
found to be a result of the predict method returning a hard assignment of
−1 or 1, when in fact it needed to return the raw output of the SVM. It was
this problem which led to the introduction of the predictLabel method into
the Classifier class — the need for this distinction had not been identified
during the design phase.

The project supervisor suggested that in addition to drawing the output
showing the hard assignment of each point to one of the two classes, it would
be nice to show a shading of the display based on the raw value of the SVM at
each point. In effect, this would display a kind of confidence measure for the
algorithm across the plotting space. To accomplish this, an additional style,
COMPLEX SHADED, was added to the Dataset class. This is currently defined
only for binary classifiers. Plotting is done by assigning pure blue to the
point with the minimum value of SVM output across the whole space, and
pure red to the point with the maximum value. For other points, the Plotter
computes the appropriate proportion of red and blue based on the position
of the SVM output relative to the maximum and minimum. In addition
to being a useful visualization, the effect is also quite pleasing visually. A
screenshot showing this mode of operation can be seen in figure 6.5.

6.4.5 Kernel K Means

The kernel version of K Means was implemented next. Given that the algo-
rithm operates very similarly to standard K Means, and the kernel framework
was already in place from SVM, coding this algorithm was fairly straight-
forward. The first attempt at implementing the algorithm failed, since the
assignments of the points were updated as the algorithm went, and so the
assignments of the earlier points in the dataset were used to update those of
the later points. This was pointed out quickly by the project supervisor, and
the problem was corrected by maintaining a separate set of new assignments,
and copying this to the training data only after all the new assignments were
made.

This algorithm was found in testing to be very sensitive to initial con-
ditions. The first implementation randomly assigned the starting cluster of
each point, which sometimes led to one class dominating the others and a
suboptimal clustering being produced. The problem was partially solved by
using a different system of initial assignments. The first K − 1 clusters are
each assigned a single random point, and the K-th cluster is assigned the
remainder of the data. This improved the number of cases where all clusters
were represented in the solution at convergence, but the algorithm remains

47

Figure 6.5: The SVM algorithm — a Gaussian kernel has been used. Raw
colouring mode is shown, and the support vectors are highlighted in white.

sensitive to the random starting positions of the single point clusters. This
seems to be a deficiency of the algorithm itself, rather than the implementa-
tion.

6.4.6 Maximum Likelihood

The final algorithm which was implemented was the maximum likelihood
regression method. This was fairly simple, since much of the code is identical
to that for minimized loss. The optimal parameters are the same, and the
optimal variance is computed in the same way as the average training loss for
minimized loss. Thus a lot of the code was reused from the earlier algorithm.
However, there were two main differences.

First, the code for adding error bars. For points which errors had been
enabled, the MaxLikelihood version of getOutput sets the size of the error

48

equal to the predictive variance,

vnew = xT
new(cov ŵ)xnew.

Error bars are drawn as vertical bars extending a distance vnew up and down
from the point, along with two horizontal lines to mark the ends of the error
bar.

Secondly, to compute the likelihood of test sets, it is necessary to eval-
uate Gaussians with given means and covariance. To facilitate this, a class
Gaussian was created that represents a one dimensional Gaussian distribu-
tion. The class has methods to set the mean and variance, and to evaluate
the Gaussian for a given x. When computing the likelihood of a Dataset,
one of these objects is created for each point, and the values returned by
the evaluate method at each point are multiplier together to produce the
likelihood.

6.5 Sampling Data

Alongside the algorithm implementations, a variety of techniques for generat-
ing data were added to the teaching aid. These were added at various points
during the development, but the discussion on them is collected here for
clarity. For each technique, a class extending the Sampler class was created,
specifying an implementation of the nextPoint method.

All of these data generation techniques are controlled via the DataPanel
class. When an option is selected from the drop down menu, the panel
displays the appropriate configuration options. This is accomplished using a
CardLayout, which is similar in function to a tab pane, except that different
views are selected by a mechanism other than tabs.

6.5.1 Polynomial Sampling

The first data generation technique was sampling from a polynomial. This
is done by the PolySampler class, and is fairly straightforward. The user
specifies a polynomial order and a value for the noise. The coefficients of a
polynomial of the appropriate order are randomly generated. A random x
value in the range [−10, 10] is chosen, and the value of the polynomial at that
x is computed. The effect of noise is simulated by adding or substracting a
random value, multiplied by the noise value which was previously set. If the
resulting t value has |t| > 10, the point is rejected and a new x value is tried
to ensure that the sampled data is visible on the plot.

49

The difficulty in implementing this technique arises in scaling the coef-
ficients appropriately so that the polynomial which is sampled from is ‘in-
teresting.’ In particular, it should have clear turning points in the visible
data range, and should not be too steep. A heuristic that scales the co-
efficients so that higher order terms have lower coefficients on average has
been implemented, which results in interesting polynomials a fair proportion
of the time. There is still room for improvement, however, as some of the
polynomials generated are uninteresting in the plotted space.

Once the desired number of points have been sampled, the coefficients
of the polynomial are randomized again. Previously, a separate button was
included to randomize the coefficients, but user feedback suggested that most
users would only want to sample from a given polynomial once anyway.

6.5.2 Gaussian Sampling

The class GaussianSampler implements sampling from a two dimensional
Gaussian distribution. The mean vector and covariance matrix of this Gaus-
sian are set by clicking and dragging on the display to draw an ellipse. For
simplicity, only ellipses with axes orthogonal to the plot’s axes can be drawn.
These correspond to Gaussians with diagonal covariance matrices. Once the
user finishes dragging, the mean is set to the center of the ellipse and the
diagonal components of the covariance to the sizes of the semimajor and
semiminor axes.

The particular sampling algorithm implemented is taken from [10]. If z
is a vector of independent normally distributed values, µ is the mean of the
Gaussian, and Σ is the covariance, then a vector d which is a sample from
the Gaussian can be produced by

d = µ + Az.

Here, A is the lower triangular matrix produced by the Cholesky decompo-
sition of Σ. Since Java’s Random class provides a method nextGaussian,
it is trivial to create z. The Jama matrix library is able to do a Cholesky
decomposition, and so this sampling algorithm was easy to implement.

6.5.3 Polygon Sampling

The project supervisor expressed an interest in being able to generate data
from inside a user specified polygon. It was unclear how feasible this was,
but on inspection of Java’s graphics API, the class Polygon was found. This
represents a set of points joined in order to create a polygon. It includes

50

a method to test if a given point is inside the polygon or not, which is the
difficult part of sampling from a polygon. Additionally, the Graphics class
has a method to draw a polygon, so no additional code is needed for that.

The teaching aid implements this function by allowing users to click on
the display to define the vertices of the polygon. When the user clicks the
button to generate data, the application simply samples random points in
the plotting space, keeping those which fall inside the polygon and rejecting
others, until the requisite number of points is generated. This rejection sam-
pling technique is fairly inefficient, but given the speed of modern computers,
the process still takes a very short time. This technique is a very powerful
one, allowing data to be produced from very complex shapes with minimal
effort.

One main difficulty arose in implementing polygon data generation. This
was related to the fact that the Polygon class only accepts points with integer
coordinates. The first implementation simply kept a direct reference to the
polygon, and so when the display was resized, the polygon did not resize
with it. To overcome this problem, the PolygonSampler class was altered to
act as a ‘wrapper’ for the Polygon object. A list of points in the data space
was maintained, and the integer vertices of the polygon were recomputed
each time the Plotter was resized. An unavoidable side effect of this was
that PolygonSampler had to maintain a reference to the Plotter, so that data
could be transformed back and forward between integer and data coordinates.
This introduced an undesirable coupling into the design, but was the only
apparent way to add the functionality correctly.

6.6 Data storage

The final use cases to be implemented were those concerning the storage of
data. The ability to save and reload datasets was added, along with the
ability to export an image of the plot. All of these functions are accessed in
the application through the File menu.

6.6.1 Saving/Loading Data

The ability to save and load data is a useful one. It allows users to keep a
record of interesting datasets they have found, and share them with other
users if they wish. Datasets are saved to text files using the custom *.dset
extension. A specification of this format is given in appendix D.

Files are loaded and saved by the FileManager class in the io package.
This class consists of several static methods — one for writing a dataset

51

to file, one for reading a dataset from file, and one for reading from an
InputStream object. The last of these is used to ensure that it is possible to
load files located inside a JAR file. The implementation details are relatively
uninteresting — saving involves iterating over the Dataset and writing the
details of each point to the file, and loading parses the file and extracts the
relevant details, creating a Datapoint for each line of the file.

6.6.2 Example Datasets

As well as allowing the user to save and load their own files, this functionality
is used to package a number of interesting datasets directly into the teaching
aid. These are accessed through the data generation panel, and include var-
ious cases where the algorithms ‘break’. This allows useful examples to be a
core part of the application rather than requiring users to obtain the example
files themselves. The example datasets are simply .dset files located inside
the JAR files for the program. These are accessed using the FileManager
class, just as for standard files.

6.6.3 Exporting Images

Finally, a facility for exporting images of the current state of the Plotter was
added. This was added as a “would like to have” requirement, as it was un-
clear how easy or difficult the task would be. Fortunately, it proved very easy
as Java as a number of built in features supporting the creation of images.
The method is as follows: create an object of the BufferedImage class, get
its Graphics object, call Plotter’s paintComponent method on that Graphics
object. Finally, using the static ImageIO.write method, the BufferedImage
can be written to one of a number of file formats. This process is also carried
out by a static method in the FileManager class. Currently, the teaching
aid only supports saving the display in the PNG format. This decision was
taken because PNG is a lossless format, and produces a good representation
of the plot. Other formats could easily be added in the future, however.

52

Chapter 7

Testing and Evaluation

An important part of any software development exercise is testing. For this
project, the testing took two main forms. First, continuous system testing
throughout the development. This was used to ensure that individual code
entities were functioning as intended. Secondly, at the end of the implemen-
tation phase a user evaluation took place. The purpose of this was twofold
— to assess the performance of the teaching aid against the original require-
ments, and to allow a representative sample of end users to try the final
program and obtain their feedback. A discussion of both types of testing is
presented below.

7.1 System Testing

One of the main goals of testing is to expose and remove as many defects as
possible from the program. The value of testing is particularly emphasised
in agile software development methods. Since the project was developed
using an agile, incremental model, regular integration and testing was done
throughout the implementation process. After each new piece of functionality
was written and added to the GUI, it was tested as fully as possible before
moving on to the next feature.

For the machine learning algorithms, the project proposal called for unit
tests to be written to check that each algorithm produced the correct out-
put. To do this, a test set must be produced and the algorithm’s on the set
computed externally — either by hand or using another software implemen-
tation which is known to be correct. A Java framework, JUnit, exists for
writing unit tests and making assertions about the state of a program after
a specific series of method calls. The initial test plan involved writing a suite
of JUnit tests for each algorithm, and ensuring that it passed all its tests

53

before moving to a new phase of the development.
The problem with this is that creating good test sets and evaluating the

output externally to the teaching aid is very time consuming. For regression
models, this was manageable. It is reasonably simple to generate data from a
known polynomial, then train a regression algorithm on those data and check
that the parameters match those of the original polynomial. Indeed, this was
done for the minimized loss algorithm, and the implementation proved to be
correct.

However, with other algorithms the process of creating validation sets is
much more difficult. Hand executing an SVM, for example, is a daunting
prospect. Even using a program such as MATLAB to generate the data
takes time, since processing must be done to get the data into a format the
teaching aid will recognise. Given more development time, this would be
possible and algorithm correctness could be checked formally, but for the
purposes of the project it was decided unit testing was infeasible.

Instead, system testing took the form of regular user tests by the author.
After each change, the program was run and time was spent trying out the
new feature. Additionally, the program was demonstated to the project su-
pervisor on a weekly basis, and he also tested it. In this way, the various
configuration options for each algorithm were tested using a number of dif-
ferent settings. This relied on the expert knowledge of the testers to assess
whether an algorithm was working or not. This is one of the biggest potential
weaknesses of the project as a whole — there is no definitive evidence that
any one implementation is correct. However, given that the algorithms all
appear visually to be performing as they should, and respond to parameter
changes in the expected fashion, the risk posed by this less formal testing
procedure appears to have been avoided.

In addition to testing the logic of individual features, testing was carried
out to ensure the program is robust against malformed input — in each
instance where the user is asked to provide input though a text field, the value
supplied is checked to ensure that errors are identified and communicated to
the user in a useful fashion. Each text field has been tested with a variety of
inputs, both correct and incorrect, and the program has passed all of these
tests.

The system testing as a whole was successful, in that no major bugs or
faulty logic is exhibited in the final software deliverable. All of the original
use cases can be performed without incident in the teaching aid, so the
requirements are validated.

54

7.2 User Evaluation

The development of the teaching aid concluded with a user evaluation. The
primary aims of this were:

• To investigate how easily users were able to perform a selection of tasks
in the application

• To identify any bugs which had been missed during the implementation

• To gain general feedback about any aspects of the program which were
difficult to understand.

A total of eight users took part in the evaluation. Of these, three were for-
mer Machine Learning (M) students, three indicated other previous machine
learning experience, and two had no machine learning experience at all. The
last group were included in the evaluation to provide an indication of the
system’s usability from the perspective of a novice. Additionally, having no
prior experience of the concepts of the subject, they were able to provide un-
biased commentary on the quality of the help files built into the application.

7.2.1 Methodology

The evaluation gathered information in a number of ways, each of which is
discussed below.

Task List

Participants were first given a document introducing the layout of the teach-
ing aid and explaining the basic steps to run an algorithm. With this in-
formation, evaluators are then presented with a task list to work through.
The tasks include generating data using each of the available methods, and
trying each of the implemented algorithms using a variety of settings. Users
are also asked to read some of the help files, and to use the file handling
capabilities of the teaching aid to ensure they work.

The tasks on the list are kept fairly general in their wording — this was
to assess how obvious it was to each user which control related to each part
of the functionality.

Direct Observation

In conjunction with the task list, the participants were observed as they
used the application and notes were taken on any occasions where they were

55

unsure how to proceed, and on any bugs they encountered. If they were
unsure, participants were encouraged to “think aloud” about the process of
navigating over the GUI to find the correct option. This provided insight
into a number of usability issues. If they were unable to find the correct way
to proceed, participants were directed to the help files.

Questionnaire

After working through the task list, participants were asked to fill out a short
questionnaire. The questions were not designed to be analysed in great sta-
tistical detail. Rather, their purpose was to gain a sense of the participant’s
overall impressions of the teaching aid and to prompt further discussion. The
questions posed and the responses collected are discussed in the next section.
The task and an unfilled questionnaire can be seen in appendix C.

Interview

The evaluation ended with an informal interview. No set questions were
asked. Instead, participants were invited to discuss their questionnaire re-
sponses to gain a more detailed understanding of any issues they faced. Fur-
ther, during the interviews a number of comments were raised which did not
fit into any other part of the evaluation. Brief notes were taken summarising
the salient points of these interviews.

7.2.2 Results

Questionnaire Responses

The questionnaire contained two Likert style questions, asking evaluators
to rate the overall design somewhere between excellent and very poor, and
to rate the usefulness of the help files between useless and very useful. All
respondents rated the design either very good or excellent, indicating that
the majority of tasks were simple and intuitive to perform but that some
required additional help. The help files were primarily deemed useful, with a
few participants opting for very useful. The general consensus is that the help
files provide a good accompaniment to the main application. One evaluator
explicitly noted in the questionnaire that although they did not understand
the mathematical content of the machine learning material, the help files
still provided them with a better understanding of what the algorithms were
doing.

Another question asked if users were able to complete all tasks on the
list — encouragingly, all evaluators indicated that they were. Additionally,

56

all users who had previous machine learning experience indicated that they
thought the application was a good introduction to the basic concepts it
covers. All the MLM students who took part in the evaluation indicated
that the teaching aid would have been beneficial to them during the course.

However, not all users completed the task list without encountering at
least one unexpected error. A description of some of the issues encountered
follows.

Bugs

A number of bugs were encountered by the evaluators. These included:

• If a regression model was trained, and the points cleared, it became
impossible to plot the vertices of a polygon. Erroneous error messages
were displayed after each mouse click.

• When dragging to define a Gaussian, dragging up and to the right
or down and to the left did not work correctly. A straight line was
produced instead of an ellipse.

• If the radio button for choosing the active dataset is set to ‘Test points’
when a new algorithm is set, the setting is not changed back to ‘Training
points’ correctly. This leads to algorithms appearing to break.

• If the user attempts to sample from a polygon without first defining
the shape, the program crashes.

• When changing to a new data generation technique, if there is already
an ellipse or polygon drawn on the screen, it does not clear until the
display is clicked.

• When adding a new regression model, the new tab is not automatically
focused.

• The labels showing the misclassification data for KNN and SVM did
not update from 0/0.

The majority of these bugs were due to small errors in the logic of the pro-
gram. These have all been fixed in the delivered version of the teaching aid.
The only exception is the last item, regarding the misclassification labels.
This error seems to be specific to the machines in the MSc lab where most of
the evaluations were carried out. It was not possible to reproduce the error
on either of the machines primarily used for development, and the error did

57

not occurs in evaluations conducted in locations other than the lab. The ex-
act cause of the problem remains unclear, as insufficient time was available
in the lab to debug the issue.

Comments and Observations

In addition to highlighting defects in the program, the evaluations raised a
number of interesting comments about the design and suggestions for im-
provement. These are summarised below.

The single most common design issue raised was that users expected
the plotted polygon or ellipse to clear after data was generated. The ini-
tial design left the objects in place, in case users decided they wanted more
points from the previous distribution. In practice, none of the evaluators
used the functionality in this way, and many encountered confusion when
they attempted to draw a new polygon only to have the existing one ex-
tended instead. The feedback with regard to this was so overwhelming that
the implementation was changed to match the user suggestion. One evalu-
ator additionally suggested that on a related point, there was no need for
the polynomial data generator to have a separate button to randomize the
coefficients. Users would only sample from a given polynomial once, so the
coefficients should randomize automatically after generation. This change
was also implemented.

It was suggested that the help files should be rewritten to show a clearer
delineation between the theoretical aspects of an algorithm and the details
of its implementation in the teaching aid. This is a valid concern. The help
files were written in HTML, since Java offers the ability to parse and display
HTML files natively. However, this made it difficult to include mathematical
notation, since the default implementation is unable to parse MathML. Thus,
the files were kept to plain text as far as possible, which led to some intermin-
gling of the two details. No changes were made as a result of this comment,
but an improvement of the help files would be a useful future extension of
the project.

On a related note, some users felt that having the help files displayed in
a separate window was not optimal, and they would have preferred to have
the help shown in one of the free parts of the layout. This is another possible
candidate for future work.

A general observation made by a number of evaluators was that the data
generation aspects of the GUI were harder to use than the algorithmic parts.
In particular, several were unclear about the exact purpose of the train/test
dataset selector, and others did not realise immediately how to change the
class of new points. The common expectation was that all options related

58

to data would be in one panel, and so users were unclear as to the reason
for the ‘Points’ subpanel. Enough people raised these concerns to warrant
a possible redesign of the interface in the future, perhaps merging the two
subpanels into one larger structure.

Several users highlighted the known issue that polynomial data are some-
times sampled from ‘uninteresting’ functions. This reinforces the need to
improve this feature in the future.

One evaluator expressed an interest in an option to turn off the automatic
retraining after new points are added, and instead have retraining done only
when the appropriate button is pushed. This is one of the few points raised
by the evaluation that I actively disagree with. One of the primary ideas
behind the teaching aid is that it allows users to explore changes to models
in real time. If retraining could be turned off, the state of the model would
become out of alignment with what the user might expect given the data.
This feature would likely be visually confusing, and this should be avoided.

It was suggested that functionality be added for saving the settings of an
algorithm alongside a dataset so that the two could be loaded together as
a complete worked example. This is an excellent suggestion, which had not
previously been considered. There was insufficient time to add such a feature
before the deadline, but adding this would be an excellent future addition to
the teaching aid.

The final suggestion for improvement that came from the evaluations was
a request for a session history function. This would allow users to move back
through the history of algorithms and datasets they have used during the
current session, in case they wish to recover an interesting case but forgot to
save the data or cannot remember what settings were used for the algorithm.
This would take a significant investment of time to implement, but could be
useful.

Not all the comments received were criticisms or suggestions for improve-
ment. Encouragingly, a number of users praised the visual design of the
teaching aid and expressed a strong belief in its usefulness. In particular,
one person commented that the use of shading to show classification output
was very instructive, and was much clearer than other diagrams they had
seen previously. This is a good indicator that this particular design choice
was the right one.

59

Chapter 8

Conclusion

8.1 Project Status

From the outset, this project had a clear aim: to implement a program to
teach basic machine learning concepts. This goal has been achieved. The final
version of the teaching aid is a robust, well implemented piece of software,
and it meets all of its original requirements. User evaluation has indicated
that the program is simple to use, and has substantial merit as a didactic
tool.

The project proposal called for a modular, extensible design, which has
been achieved through the use of inheritance structures to define the required
functionality for algorithms. The logic of implementing an algorithm is sep-
arate from the user interface, which means the GUI can easily be upgraded
without extensive changes to the domain model. The interface classes ex-
hibit a degree of coupling, but this is very hard to avoid in a graphical user
interface. Aside from this, the design makes good use of object orientation to
define focused, cohesive classes which are organized in a clear, logical package
structure.

While a number of challenges arose during the development, none of these
proved insurmountable, and the final product is free from ‘deep’ errors. There
is certainly room for the teaching aid to expand and improve in the future,
but as it stands the software offers a solid introduction to a variety of machine
learning techniques, and the project can be deemed a success.

8.2 Outstanding Issues

There is one major outstanding issue in the teaching aid as it stands —
the look and feel. It was decided that the program would be set to use the

60

system look and feel, which is different across different operating systems,
rather than the consistent but unappealing Java look and feel. The evaluation
has highlighted that while the program runs fine on all platforms it has been
tested against, there are a number of visual deficiencies on OSX. The Apple
implementation of Java uses larger fonts by default than other platforms, so
additional scroll bars appear in undesirable places and some labels are cut
off because Swing classes do not wrap text automatically. Since a Mac was
not available for regular testing, it was impossible to identify and correct all
of these issues.

To allow for this, two versions of the executable JAR file for the teaching
aid have been submitted. One uses the system look and feel, which works fine
on Windows and Linux. The other uses the Java look and feel. While this
is not particularly attractive, it at least renders in the same way across all
platforms and allows all the information to be seen. Given more development
time and access to a Mac, it would be good to correct these GUI errors.

8.3 Areas for Further Work

There are a number of potential areas for further work on the teaching aid.
Some of these have already been discussed, but the suggestions are collected
here for easy reference.

First, and most obviously, more algorithms could be added. Indeed, one of
the reasons care was taken to produce a modular design was so that someone
else could extend the project in the future to increase the range of algorithms
it covers. There are a huge number of available machine learning techniques,
many of which can benefit from visualization, so there is no shortage of
potential work in this area.

As well as new algorithms, the data generation capabilities of the teaching
aid could also be extended. While the polygon sampling is very flexible and
can be used to approximate other sampling techniques, there are potentially
other distributions which could be implemented. Also, there is scope for the
improvement of the polynomial generator. A better method of scaling the
coefficients so that interesting data are produced could be found, for exam-
ple. Additionally, it could be possible to add nonlinear terms in addition
to the polynomial itself. Since the teaching aid can fit sine curves and ex-
ponentials, it seems reasonable that it would also be able to generate data
according to such a model. This would require some redesign of the interface
for polynomial sampling.

The fact that the display is constrained to show a particular interval is
something of a limiting factor. A useful extension would be to implement

61

zooming on the plotting space, so that data can be plotted over a wider range
of values. It would also allow more of a given regression model to be seen, so
that users can gain an intuition of how the predictive performance extends
outside the range of the data.

The help subsystem is still fairly basic. The quality of the files could
be improved by adding a MathML or LATEXparser, to allow easy typesetting
of mathematics in the files. Also, a redesign of the interface placing the
help for an algorithm on screen whenever the algorithm is loaded could be
useful. It is currently slightly unwieldy to switch back and forth between the
teaching aid and the help window when additional information is required.
Indeed, an overhaul of the interface in general could be beneficial. The
current structure of DataPanel, in particular, caused problems for some users
during evaluations, so a review of that is in order.

Finally, some evaluators had novel ideas for improving the application in
the future. A history feature, though it would probably take a lot of work,
would be an excellent enhancement and offer a lot of useful functionality
for end users. Similarly, the ability to save algorithm settings together with
datasets and load them as worked examples would be a good improvement.

62

Appendix A

Statement of Requirements

A.1 Functional Requirements

Data generation:

• It must be possible to plot a single data point.

• It must be possible to generate a number of points from a given poly-
nomial or distribution.

• It must be possible to remove individual points.

• It must be possible to assign the label on a point, for algorithms which
require labels.

• It must be possible to distinguish between training and testing points
when plotting.

Algorithms

• It must be possible to select an algorithm to run on the plotted data.

• It must be possible to configure any options for the selected algorithm.

• It must be possible to run an algorithm and plot the resulting model.

• It should be possible to view multiple models over the same data set
simultaneously for regression algorithms.

Cross Validation

• It must be possible to compute the performance of an algorithm using
cross validation over the training set (where appropriate performance
measures exist).

63

• It could be possible to compare the performance of different models
using cross validation.

Data storage

• It should be possible to save the training and test sets so they can be
recovered later.

• It would be useful to be able to export an image of the current plot.

A.2 Non-functional Requirements

• The system should be developed in Java.

• The interface should be designed assuming a basic knowledge of ma-
chine learning

• The interface should be designed to be intuitive and easily usable.

• Algorithm implementations should be as efficient as possible — no al-
gorithm should take longer than a few seconds to train on a set of less
than 1000 points.

A.3 Use Cases

From the requirements above, a number of candidate use cases were ex-
tracted. A diagram showing these is included below.

64

Figure A.1: Use Case Diagram

65

Appendix B

Design Documents

This section contains a package diagram showing the overall structure of the
teaching aid, followed by a collection of class diagrams showing the individual
contents of the packages. For clarity, instance variables and methods are not
shown on these diagrams. To obtain this information, see the Javadoc on
the accompanying CD.

66

Figure B.1: The overall package structure of the teaching aid

67

Figure B.2: The algorithms package

Figure B.3: The data package

68

Figure B.4: The functions package

69

Figure B.5: The gui package

70

Figure B.6: The help and io packages

71

Appendix C

Evaluation Documents

This appendix contains the documents which were presented to participants
of the user evaluation for the teaching aid. These include a basic informa-
tion document detailing the operation of the teaching aid, a task list, and a
questionnaire. The original documents were created using Microsoft Word,
but for this document have been rewritten in LATEX.

72

C.1 Basic Information Document

The basic layout of the teaching aid application is shown below, with notes
showing the purpose of each section of the interface.

The basic steps to use the program are as follows:

1. Choose an algorithm in the left hand panel

2. Generate some data — either click on the plot or use the options in the
bottom panel

3. Configure the options for your chosen algorithm in the right hand panel,
then click ‘Train Model’

4. Individual points can be clicked on to remove them. Add or remove
points to see how the output of an algorithm changes

Use these basic instructions to work through the task list on the following
pages. If you need more information about an algorithm or feature, try the
help files. These are available through the menu by choosing Help -> Show
Help.

73

C.2 Task List

Minimized Loss

• Plot some data by clicking on the display

• Choose some terms at the right hand side and train a model

• Run cross validation on your model

Maximum Likelihood

• Choose the maximum likelihood algorithm, then generate some data
from a polynomial

• Choose some terms and train a model

• Add a second model, and change its line colour

• Click the Partition Data button a few times and observe the effect

KNN

• Generate data from a few Gaussians use several different classes for
the points.

• Train a model with K (Number of neighbours) = 1

• Try changing the value of K to see the effect

SVM

• Use the polygon option to generate some data make sure to add both
red and blue points.

• Train the model using a linear kernel

• Change to Raw colouring mode

• Try adjusting the value of C

• Change to a different kernel

• Change the value of the kernel parameter

• Run cross validation

74

K Means

• Plot some data using any method you want

• Click the Start Clustering / Next Iteration button until the algorithm
converges

• Reset the algorithm, then change the value of K and start again.

Kernel K Means

• Load the Concentric Rings example dataset

• Use a linear kernel to cluster the data note that it fails to capture the
structure

• Use a different kernel to cluster the data change the parameters until
you are able to capture the structure

Other Features

• If you have not used the help system up to this point, please read a few
of the entries now.

• After training a model, try exporting an image of the plot.

• Try saving and reloading a dataset.

C.3 Questionnaire

1. How clear was the design of the teaching aid?

• Excellent — all tasks were easy and intuitive to perform

• Very good — most tasks were easy, but some required additionaly
help

• Okay — some tasks were easy, some were difficult

• Poor — many tasks were hard to perform

• Very poor — the application was extremely difficult to use

Specific comments on the design, if any?

2. Were you able to complete all the tasks?

75

• Yes

• No

(a) If no, which tasks were you unable to complete?

3. How useful were the help files?

• Very useful — the help text aided my understanding of one or
more features

• Useful

• Not useful

• Useless — the help text failed to clarify one or more problems

Specific comments on the help files, if any?

4. Did you encounter any unexpected errors while using the program?

• Yes

• No

(a) If yes, please describe these errors.

5. Did you take the Machine Learning (M) course as part of your studies,
or did you have experience of machine learning before undertaking this
evaluation?

• Yes — MLM student

• Yes — other previous experience

• No

(a) If yes, do you think the teaching aid offers a useful introduction
to the concepts it covers?

• Yes

• No

(b) If you took the course, would the teaching aid have been useful to
you in lectures and lab sessions?

• Yes

• No

6. Suggestions for improvement / Any other comments

76

Appendix D

Dataset file format

Datasets are saved to file with the .dset extension. The file format is plain
text, with a very basic format.
The first line of the file contains ‘#Dataset’ and nothing else.
The second line of the file contains ‘#size:’ followed by the number of points
in the dataset.
The third line of the file contains ‘#Num classes:’ followed by the number
of distinct labels on the points of the dataset.
Each subsequent line of the file represents 1 datapoint. Each line has three
double values, separated by spaces. In order, these are the x coordinate, the
y coordinate, and the label of the point.

77

Appendix E

Contents of Accompanying CD

The CD accompanying this dissertation contains a number of folders. A
summary of the contents of these is presented below.

Reports:
This folder holds a PDF copy of this dissertation, along with a copy of
the original project proposal.

Documentation:
This folder contains the Javadoc output generated from the teaching
aid code.

Source Code:
This folder contains the Java source code for the teaching aid applica-
tion.

Executables:
This folder contains two JAR files. teachingaidfinal.jar is an exe-
cutable for the teaching aid, using the system look and feel.
teachingaidfinalJ.jar is the same executable, but using the Java
look and feel.

Diagrams:
This folder contains full size versions of all the diagrams included in
this report.

78

Bibliography

[1] T. Abeel, Y.V. de Peer and Y. Saeys, Java-ML: A Machine Learning
Library, Journal of Machine Learning Research, 2009, 10, 931-934

[2] Apache Software Foundation, Apache Commons Math, Available at:
http://commons.apache.org/math/

[3] CERN, Colt Project, Available at: http://acs.lbl.gov/~hoschek/

colt/

[4] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support
vector machines, 2001, Available at: http://www.csie.ntu.edu.tw/

~cjlin/libsvm

[5] Dai Clegg and Richard Barker, Case Method Fast-Track: A RAD Ap-
proach, Addision-Wesley, 1994

[6] Jeff De Luca, Feature Driven Development, Available at: http://www.

nebulon.com/fdd/index.html

[7] Donald W. Denbo, Scientific Graphics Toolkit, NOAA/PMEL/EPIC
Group, Available at: http://www.epic.noaa.gov/java/sgt/

[8] End of the World Productions, Machine Learning Applets, Available at:
www.theparticle.com/applets/ml/index.html

[9] Andreas Geiger, Gaussian Processes for Machine Learning Java Applet,
Available at: www.rainsoft.de/projects/gausspro.html

[10] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin,
Bayesian Data Analysis, CRC Press, 2003

[11] Donald Goldfarb and Ashok Udhawdas Idnani, A Numerically Stable
Dual Method for Solving Strictly Convex Quadratic Programs, Mathe-
matical Programming, 1983, Vol. 27, pp. 1-33

79

[12] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten, The WEKA Data Mining Software:
An Update, SIGKDD Explorations, 2009, Volume 11, Issue 1

[13] Kim Hansen, JavaOctave, Available at: http://kenai.com/projects/
javaoctave/pages/Home

[14] Hang Tong Lau, A Java Library of Graph Algorithms and Optimization,
CRC Press, 2007

[15] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,
Improvements to Platts SMO algorithm for SVM classifier design, Tech-
nical Report CD-99-14, National University of Singapore, Available at:
http://guppy.mpe.nus.edu.sg/~mpessk

[16] The Mathworks Inc., MATLAB, Natick, Massachusetts, 1984-2010

[17] The Mathworks Inc. and the National Institute of Standards and Tech-
nology, JAMA, Available at: http://math.nist.gov/javanumerics/

jama/

[18] Object Refinery Limited, JFreeChart, Available at: http://www.

jfree.org/jfreechart/

[19] Octave Development Community, GNU Octave, Available at: www.

octave.org

[20] John C. Platt, Fast training of support vector machines using sequential
minimal optimization, Advances in Kernel Methods: Support Vector
Machines, MIT Press, December 1998

[21] Trygve Reenskaug, Thing-Model-View Editor: An Example From a
Planning System, Xerox PARC Technical Note, May 1979

[22] Simon Rogers and Mark Girolami, A First Course in Machine Learning,
CRC Press, 2010

[23] Junjie Sun and Leigh Tesfatsion, QuadProgJ, 2006, Available at: http:
//econ2.econ.iastate.edu/tesfatsi/DCOPFJHome.htm

80

