
A User-Specific Machine Learning Approach for Improving
Touch Accuracy on Mobile Devices

Daryl Weir, Simon Rogers, Roderick
Murray-Smith

School of Computing Science
University of Glasgow
18 Lilybank Gardens

Glasgow, G12 8QQ, UK
darylw@dcs.gla.ac.uk, {Simon.Rogers,

Roderick.Murray-Smith}@glasgow.ac.uk

Markus Löchtefeld
German Research Center for
Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3
Campus D3-2

D-66123 Saarbrucken, Germany
markus.loechtefeld@dfki.de

ABSTRACT
We present a flexible Machine Learning approach for learn-
ing user-specific touch input models to increase touch ac-
curacy on mobile devices. The model is based on flexible,
non-parametric Gaussian Process regression and is learned
using recorded touch inputs. We demonstrate that signifi-
cant touch accuracy improvements can be obtained when ei-
ther raw sensor data is used as an input or when the device’s
reported touch location is used as an input, with the latter
marginally outperforming the former. We show that learned
offset functions are highly nonlinear and user-specific and
that user-specific models outperform models trained on data
pooled from several users. Crucially, significant performance
improvements can be obtained with a small (≈ 200) num-
ber of training examples, easily obtained for a particular user
through a calibration game or from keyboard entry data.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: Input devices
and strategies (e.g. mouse, touchscreen)

Author Keywords
Touch; Machine Learning; Regression; Gaussian Processes;
Probabilistic Modelling

INTRODUCTION
In this paper, we investigate an alternative, data-driven ap-
proach to touch. We treat the problem as a Machine Learning
(ML) task where we are interested in learning a function that
maps an input (the device’s reported touch location or the raw
sensor values) to the intended touch location. We show later
that the functions learned for individual users are highly user-
specific and vary greatly across the touch surface, overcom-
ing the limitations of a device specific offset as in [6]. We
use a flexible non-parametric regression algorithm based on
Gaussian Processes (GPs;[12]) to enable us to model complex

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’12, October 7–10, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00.

nonlinear functions without having to make detailed paramet-
ric assumptions about the touch event (as in [14]). We show
that using either the raw sensor values or the device’s reported
touch location as the input we can obtain significant improve-
ments in accuracy using a number of recorded touch events
lower than that collected per user in [6].

Given the increasing ubiquity of touch, there is a clear need
for techniques which facilitate accurate input. One of the pri-
mary causes of touch error is the so called “fat finger prob-
lem” [3]: through the act of touching, the user occludes the
very targets she is trying to touch and the softness of the
finger/thumb produces a much larger, more ambiguous, con-
tact region than intended [8]. This is particularly problematic
when users type on a virtual keyboard with their thumbs, both
when operating the device one-handed [11] (holding and typ-
ing with the same hand) or typing with two thumbs with the
device in landscape mode. The result is a user-specific offset
between the touch location reported by the device and that
intended by the user.

There has been considerable research effort directed at
creating models to account for this offset. Studies both in
the wild [6, 7] and in the lab [8, 14] have succeeded in
compensating for some of the error inherent in touch based
interaction. Unfortunately these approaches are either based
on custom hardware or on global compensation methods;
none of them focused on the needs of specific users. The
approach proposed here is both user-specific and uses only
data available on commercial smartphones. Further, our
model is fully probabilistic in its predictions and is naturally
able to incorporate data from sensors other than the touch
screen (e.g. accelerometer readings). This approach provides
the basis for future research into propagating uncertainty
from input to application and potentially opening rich new
channels of interaction.

RELATED WORK
Even though HCI research focused on touch screens based on
capacitive sensing has been conducted for over 25 years [10],
current error rates suggest there is still room for improvement
[6]. Precise capacitive touch input is clearly a desirable goal,
given the increasing ubiquity of touchscreen devices. Such
devices are employed in an extremely broad range of settings

465

— even input through fabric enclosure (e.g. inside a pocket)
has been successfully explored [16].

In lab studies, [8] investigated the relationship between fin-
ger orientation and touch error and introduced ‘Ridgepad’ –
a device that could infer finger orientation through finger-
print scanning. Similarly, [14] showed that it is possible to
infer finger orientation using an array of capacitive sensors
and sophisticated Bayesian statistical techniques. Both [8]
and [14] showed that there is considerable diversity between
users, and between finger and thumb use. This suggests that
significant improvements could be made if user- and context-
specific models were built. Unfortunately, the improvements
in touch performance described by [8] and [14] come at sig-
nificant hardware and computational costs respectively and
therefore do not offer solutions that are currently practical.

In two recent large-scale studies, [6, 7] used a crowd-sourcing
approach to collect vast quantities of touch data from a vari-
ety of users and devices. They investigated simple tapping as
well as text entry with applications deployed in the Android
Marketplace. Their data led them to create a device-specific
compensation function which they then showed improved ac-
curacy [6]. For the text-entry scenario a simple shift function
helped to decrease the error rate by 9.1% globally [7]. This
approach increases the accuracy of touch input, but we argue
that there is still room for improvement. In [9] it was shown
that the personal perceived touch point is important, in addi-
tion to the physical characteristics of the touching finger or
thumb. Users tend to use visual features of their fingers for
their mental model that determines the corresponding point
on the screen that their touch hits. Since these mental models
can differ between users, personalized models would have a
bigger influence than general models. This is a key motiva-
tion for our approach – no matter how good the sensing hard-
ware is at converting sensor inputs into a touch location, there
will always be user-specific biases. For example, in Figure 1
we show the smoothed sensor values for a touch event (white
is high valued, black low). The grey circle shows the touch
location reported by the device, which looks very reasonable
given the sensor values. However, the white circle represents
the point the user was trying to touch. This offset between
the intended touch point and the measured touch point will
be highly user-specific (see e.g. [9, 14]) and it is this error
that we aim to reduce in this work.

In both [9] and [6], the techniques proposed give determin-
istic values for the intended touch location — there is no in-
formation about the uncertainty of predictions. There is a
growing body of research showing the value of propagating
uncertainty from input to the application level [20, 18]. [15]
explicitly models the uncertainty in a touch input and uses
this to negotiate the handover of control between the user and
the system. The authors demonstrate a map browsing appli-
cation which automatically scrolls towards nearby points of
interest when user input is uncertain (i.e. when the finger is
lifted from the screen slightly.) The work of Schwarz [17] is
also relevant. The authors propose a framework for modelling
uncertain interaction which allows a system to consider sev-
eral possible actions and assign them probabilities based on

user input. Definitive action is only taken when the probabil-
ity for an event reaches a certain threshold. The predictions
of our model are Gaussian distributions with full covariance
structure, which could be used as input to such a probabilistic
interaction framework.

Personalized models have been used commonly for key-target
resizing on soft keyboards [2] but the disadvantages of these
techniques is that the approach is only applicable for key-
board input since they are based on natural languages tech-
nologies. Similarly, in [4] the authors use machine learning
to classify which key a given touch was targetting. Again,
this requires specific information about the layout of the key-
board and is not generally applicable to all touches. Our
approach combines the personalization and learning process
with the power of a model which increases touch accuracy for
all tasks.

TOUCH AS A MACHINE LEARNING PROBLEM
Our approach to overcome the problems discussed above is to
introduce a machine learning technique that allows us to cre-
ate user specific models based on either raw touch sensor data
or the device’s reported touch location. We are able to access
the raw sensor data for the Nokia N9 MeeGo smartphone,
which has an array of capacitive sensors laid out in a grid.
We base most of our experimentation on this device as it is
the only commercial product for which we have access to raw
sensor data. Our task is therefore to find a mapping between
either a vector of sensor values or a 2-dimensional reported
touch location and the corresponding intended 2-dimensional
touch location on the 854x480 pixel display. Figure 1 shows
the sensor values for a typical touch towards the top of the
device (the intended touch point is represented as a white cir-
cle). It is clear that a typical touch produces a significant
sensor reading in several sensor positions simultaneously. As
already mentioned, the exact pattern of sensor activation for a
particular touch will depend on the user and on how they are
performing the touch – with a finger or a thumb say – and it is
not clear what form this function will take. We therefore turn
to a flexible non-parametric regression algorithm: Gaussian
Process regression.

Figure 1. Sensor outputs (black = low; white = high) for a touch aimed
at the white circle. The N9’s reported touch location is indicated with a
grey circle.

466

Gaussian Process Regression
Gaussian Processes (GPs) [12] are a popular statistical tech-
nique for regression and classification. In this work, we are
interested in learning a function that can map between inputs
s and intended 2D touch location (x, y): (x, y) = f(s). In
our experiments, the input s will be either the raw sensor val-
ues, or the touch location given by the device. GPs allow us
to do this without making any parametric assumptions about
the form of f(s). Instead, we supply a mean function µ(s)
(which is set to zero in all of our experiments) and a covari-
ance function, C(sn, sm), which defines how similar the nth
and mth outputs should be based on inputs sn and sm. Read-
ers are pointed to [12] for extensive details on GP regression
and classification.

Given N training examples, x1, . . . ,xn, . . . ,xN and associ-
ated locations, (x1, y1), . . . , (xn, yn), . . . , (xN , yN), our GP
regression approach proceeds as follows. Firstly, we turn
the problem from a two-dimensional regression into a one-
dimensional regression by stacking all of the locations into a
single vector:

z = [x1, . . . , xn, . . . , xN , y1, . . . , yn, . . . , yN]
T
.

Note that this does not preclude us from modelling possible
dependencies between xn and yn (see below). We now build
an N ×N covariance matrix, C, where the n,mth element is
calculated by evaluating the covariance function C(sn, sm).
This matrix is then stacked up to produce the full 2N × 2N

covariance matrix, Ĉ:

Ĉ =

[
C αC
αC C

]
,

where α controls the strength of the dependence between xn
and yn. Formally, the covariance between xn and xm (or yn
and ym) is given by C(sn, sm) whilst the covariance between
xn and ym is given by αC(sn, sm). If α = 0, we are effec-
tively using independent regression models for the x and y
locations.

Finally, we assume a small amount of additive Gaussian noise
(with variance σ2). This overcomes possible problems result-
ing from trying to map very similar input sensor values to
different intended touch locations.

Our aim is to be able to predict (x∗, y∗) for a new set of in-
put values s∗. To do this, we create a vector comprising the
covariance function evaluated between s∗ and the N input
vectors in the training set:

c = [C(s∗, s1), . . . , C(s
∗, sN)],

which is then stacked up similarly to the training covariance
matrix:

ĉ =

[
c αc
αc c

]
.

The GP prediction is a 2-dimensional Gaussian with mean
and covariance given by:

(x∗, y∗) ∼ N (µ,Σ)

µ = ĉ
[
Ĉ + σ2I

]−1

z

Σ = C(s∗, s∗)− ĉ
[
Ĉ + σ2I

]−1

ĉT .

Note that the inversion of the 2N × 2N matrix is not predic-
tion specific and can therefore be done just once after training
data has been collected. Note that if α = 0, this predictive
Gaussian will have no covariance between the two dimen-
sions (i.e. the top right and bottom left elements of Σ will be
equal to zero). Both α and σ2 are parameters that need to be
optimised.

Choice of covariance function
Many different covariance functions have been used for GP
regression. In this work, we have used the following, stan-
dard, combination of a linear and Gaussian covariance:

C(sn, sm) = b
(
asTnsm + (1− a) exp

{
−γ||sn − sm||22

})
,

where a controls the relative influence of the linear and Gaus-
sian terms and γ controls the length scale of the Gaussian.
Cross validation on a gives an indication of the non-linearity
of the mapping from the input space to the intended touch
location. We shall see later that using the sensor values as in-
put results in a highly non-linear function, whereas using the
device’s reported touch location as our input gives an even
balance of the linear and non-linear terms. This covariance
function provided excellent performance, but an exploration
of other covariance functions is an avenue for future work.

EXPERIMENTAL SETUP
We built a simple data collector in Python and PyGame
that ran natively on the Nokia N9. The software displayed
crosshairs on the screen that the users had to touch. The
crosshairs were randomly located in the area that is normally
occupied by the landscape keyboard of the N9 to simulate
text entry in landscape mode. For each touch on a crosshair,
the system recorded the intended location (i.e. the screen
location of the crosshair), the values of the capacitive sensors
and the location reported by the N9 for the touch event. After
the user lifted his finger from the screen another crosshair
would be displayed. We obtained data from a total of 8
participants (3 female), aged between 23 and 34, all of whom
performed 1000 touches holding the device in landscape
mode, using either thumb to touch (see Figure 2). All but one
of our participants owned smartphones and therefore were
used to operating a touch-screen device.

For all our experiments, we rescaled the touch locations such
that they were in the unit square centered on the origin, with
no loss of generality. This was done so that the same model
parameters can be used across different devices with different
native resolutions. We transform the data back to a real world
scale when computing virtual button accuracy and RMS error
on our predictions.

467

1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

Subject

Im
pr

ov
em

en
t i

n
ac

cu
ra

cy
 o

ve
r N

9

Training with 400, button radius 2mm

(a) N = 400, 2mm button radius.

1 2 3 4 5 6 7 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Subject

Im
pr

ov
em

en
t i

n
ac

cu
ra

cy
 o

ve
r N

9

Training with 400, button radius 3mm

(b) N = 400, 3mm button radius.

1 2 3 4 5 6 7 8

0

0.05

0.1

0.15

Subject

Im
pr

ov
em

en
t i

n
ac

cu
ra

cy
 o

ve
r N

9

Training with 400, button radius 4mm

(c) N = 400, 4mm button radius.

1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

Subject

Im
pr

ov
em

en
t i

n
ac

cu
ra

cy
 o

ve
r N

9

Training with 800, button radius 2mm

(d) N = 800, 2mm button radius.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

Subject

Im
pr

ov
em

en
t i

n
ac

cu
ra

cy
 o

ve
r N

9

Training with 800, button radius 3mm

(e) N = 800, 3mm button radius.

1 2 3 4 5 6 7 8

0

0.05

0.1

0.15

0.2

Subject

Im
pr

ov
em

en
t i

n
ac

cu
ra

cy
 o

ve
r N

9

Training with 800, button radius 4mm

(f) N = 800, 4mm button radius.

Figure 3. Improvements in accuracy rate for different virtual button radii and numbers of training examples when the raw sensor values are used as
an input. The value on the y-axis is the proportion of touches inside the button for the GP model minus the proportion computed for the N9’s native
touch location. An increase of say 0.1 corresponds to a 10% decrease in error rate. Boxplots show the distribution of improvement over 10 repetitions.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Button Radius (mm)

P
ro

po
rti

on
 o

f T
ou

ch
es

 In
si

de
 B

ut
to

n

Virtual button accuracy

N9
GP

(a) Subject 1

1 2 3 4 5 6 7
0.2

0.4

0.6

0.8

1

Button Radius (mm)

P
ro

po
rti

on
 o

f T
ou

ch
es

 In
si

de
 B

ut
to

n

Virtual button accuracy

N9
GP

(b) Subject 3

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Button Radius (mm)

P
ro

po
rti

on
 o

f T
ou

ch
es

 In
si

de
 B

ut
to

n

Virtual button accuracy

N9
GP

(c) Subject 8

200 400 600 800

2

3

4

5

Number of training examples

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Subject 1

N9
GP

(d) Subject 1

200 400 600 800

2

2.5

3

3.5

4

Number of training examples

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Subject 3

N9
GP

(e) Subject 3

200 400 600 800

2

2.5

3

3.5

Number of training examples

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Subject 8

N9
GP

(f) Subject 8

Figure 4. Comparison of performance between the N9 touch events (N9) and our Gaussian Processes predictions using the raw sensor values as input
(GP). Top row: Accuracy for different virtual button sizes (800 training points). Bottom row: Learning curves. Subject 1 represents an average user,
subject 3 a user that already performs far above average already with the N9 screen and subject 8 represents a user that doesn’t own a touch-screen
based phone.

468

Figure 2. Experimental setup: participants held the phone in both hands
and used either thumb to touch.

RESULTS
In our first set of experiments, we use the raw values from the
capacitive sensor to predict the true touch location. We pre-
dict the location directly rather than an offset, since in princi-
ple this algorithm could take the place of whatever technique
is currently used to predict device location. 5-fold cross-
validation was performed for subject 1 over a small range
of values for a, γ, b, α, σ2 and these values were then used
across all subjects. It is important to note that these param-
eters control the GP covariance function, which defines how
smooth the resulting predictive functions can be, rather than
defining the functions themselves. In practice this means that
the results for subject 1 are likely to be slightly optimistic,
and those for all other users pessimistic. Ideally, a cross-
validation would be performed on a per-user basis but the nec-
essary computation is an unreasonable demand in a mobile
setting — any deployment of the system would have to use
predetermined covariance parameters such as these. The cho-
sen parameter values were: γ = 0.05, b = 5, a = 0.1, α =
0.9, σ2 = 10−3. The sensor data is pre-processed prior to use
by first setting to zero any values that are less than 150 (we
found this was the typical background noise in the absence of
touch input) and then normalising each touch so that the sum
of the sensor values is equal to 1. The mean of the predictive
Gaussian provided by the GP is used as the inferred touch
location.

Predicting from raw sensor values
We begin by looking at virtual button accuracy, following [8]
and [14]. Assuming a circular button is placed around the
centre of the crosshair at which the user was aiming, we can
compute the proportion of touches that would fall within this
circle. In Figure 3 we show the improvement in proportion
for the GP regression over the N9s native location sensing.
Positive values mean the model is an improvement over the
N9s native algorithm. The data were analysed for three dif-
ferent virtual button sizes (2mm radius, 3mm, 4mm) and two
different sizes of training set (400 and 800 touches). In each
case, we repeated the experiment 10 times. For each repeti-
tion, we randomly sampled N = 400 or N = 800 touches
from the 1000 touches for each user and used the remain-
ing (600 or 200) samples for testing. Note that as we are
interested in personalised touch models, separate regression

models are trained for each user. The average reductions in
error rate across all users are 23.47% (2mm buttons), 14.20%
(3mm) and 4.70% (4mm).

For all users except subject 3, we see notable performance in-
creases for buttons of radius 2mm and 3mm. These improve-
ments are all statistically significant (paired t-test, p < 0.05),
with the exception of subject 3. An increase of 0.2 corre-
sponds to a potential decrease in error rate of 20%. Improve-
ments are lower for 4mm buttons reflecting the acceptable N9
performance at this radius. For 4mm buttons the improve-
ments are statistically significant for subjects other than 1, 3
and 6. To place these results in context, in Figure 4 we show
more detailed results from subjects 1,3 and 8 (representing a
wide range of performances). The top plots ((a)-(c)) show the
button radius results for buttons of radius 1mm to 7mm. The
solid curve is the performance of the GP regression and the
dashed curve that of the N9s native algorithm. For all sub-
jects, results are indistinguishable at 6mm but large improve-
ments are evident at smaller button sizes for subjects 1 and 8.
Subject 3 is the only subject for which we see no improve-
ment. Inspecting Figure 4(b), we can see that both models
perform very well for this subject — both the N9s algorithm
and the GP perform well, and so very little improvement is
possible. It is also interesting to note that subject 8 is the only
user in the study who does not own a touch-screen device and
is a user for which we see very large improvements.

The bottom row in Figure 4 shows how the root mean squared
error between the intended and inferred touch location (in
mm) varies as the training set size increases. The solid line
gives the GP performance and the shaded area shows plus
and minus one standard deviation. This was obtained by ran-
domly taking a subset of touches for training and then testing
on the remainder. The N9 performance is averaged over the
same set of test points (variance in N9 performance was too
small to visualise). We notice that for subjects 1 and 8, there
is a large drop up to 400 training examples and then perfor-
mance appears to plateau. In [6], participants recorded on
average ∼ 1000 touches each and therefore our proposed ap-
proach could be trained using data collected in a similar man-
ner. Subject 3 also plateaus at around 400 training examples,
but does not show any improvement. Again however, this can
be explained by the excellent N9 performance for this user (a
root mean squared error value of less than 2mm).

Prediction from device location
In our second set of experiments, we used the N9’s reported
touch location as input instead of the raw sensor values. This
is motivated by the fact that it is not currently possible to ob-
tain raw sensor data on most touchscreen devices. This ap-
proach is similar to the offsets computed in [6] in that it is
adding a post-processing step to the device’s reported touch
location but differs in two respects. Firstly, we are learn-
ing a continuous, user-specific offset function which can, in
theory, have a different value at any input location and sec-
ondly, the GP regression does not restrict us to any particu-
lar parametric function family, such as the 5th order polyno-
mials used by Henze et al. We once again optimise the GP
covariance parameters by performing a cross-validation (us-

469

1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

Subject

Im
pr

ov
em

en
t i

n
ac

cu
ra

cy
 o

ve
r N

9

Training with 200, button radius 2mm

(a) N = 200, 2mm button radius.

1 2 3 4 5 6 7 8

0

0.05

0.1

0.15

0.2

0.25

0.3

Subject

Im
pr

ov
em

en
t i

n
ac

cu
ra

cy
 o

ve
r N

9

Training with 200, button radius 3mm

(b) N = 200, 3mm button radius

1 2 3 4 5 6 7 8

0

0.05

0.1

0.15

Subject

Im
pr

ov
em

en
t i

n
ac

cu
ra

cy
 o

ve
r N

9

Training with 200, button radius 4mm

(c) N = 200, 4mm button radius.

1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

Subject

Im
pr

ov
em

en
t i

n
ac

cu
ra

cy
 o

ve
r N

9

Training with 600, button radius 2mm

(d) N = 600, 2mm button radius.

1 2 3 4 5 6 7 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Subject

Im
pr

ov
em

en
t i

n
ac

cu
ra

cy
 o

ve
r N

9

Training with 600, button radius 3mm

(e) N = 600, 3mm button radius.

1 2 3 4 5 6 7 8

0

0.05

0.1

0.15

Subject

Im
pr

ov
em

en
t i

n
ac

cu
ra

cy
 o

ve
r N

9

Training with 600, button radius 4mm

(f) N = 600, 4mm button radius.

Figure 5. Improvements in accuracy rate for different virtual button radii and numbers of training examples when the N9’s touch location is used as
an input. The value on the y-axis is the proportion of touches inside the button for the GP model minus the proportion computed for the N9’s reported
touch location. An increase of say 0.1 corresponds to a 10% decrease in error rate. Boxplots show the distribution of improvement over 10 repetitions.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Button Radius (mm)

P
ro

po
rti

on
 o

f T
ou

ch
es

 In
si

de
 B

ut
to

n

Virtual button accuracy

N9
GP
Linear

(a) Subject 1

1 2 3 4 5 6 7
0.2

0.4

0.6

0.8

1

Button Radius (mm)

P
ro

po
rti

on
 o

f T
ou

ch
es

 In
si

de
 B

ut
to

n

Virtual button accuracy

N9
GP
Linear

(b) Subject 3

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Button Radius (mm)

P
ro

po
rti

on
 o

f T
ou

ch
es

 In
si

de
 B

ut
to

n

Virtual button accuracy

N9
GP
Linear

(c) Subject 8

200 400 600 800
1.4

1.6

1.8

2

2.2

2.4

Number of training examples

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Subject 1

N9
GP
Linear

(d) Subject 1

200 400 600 800

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Number of training examples

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Subject 3

N9
GP
Linear

(e) Subject 3

200 400 600 800
2

2.5

3

3.5

Number of training examples

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Subject 8

N9
GP
Linear

(f) Subject 8

Figure 6. Comparison of performance between the N9 touch events (N9), a simple linear regression model (Linear) (e.g. as in [6] and our Gaussian
Process’ predictions using the N9’s reported touch location as input (GP). Top row: Accuracy for different virtual button sizes (800 training points).
Bottom row: Learning curves. Subject 1 represents an average user, subject 3 a user that already performs far above average already with the N9
screen and subject 8 represents a user that never used a touch screen based phone before.

470

ing user 5; randomly chosen). The optimal parameters were:
γ = 100, b = 1, a = 0.5, α = 0.3, σ2 = 10−3.

Figure 5 shows the improvements in performance offered by
this method over the N9’s reported touch location. We found
that similar improvements can be made with fewer training
examples than are required when using sensor data as input
and so show the performance for N = 200 and N = 600
for buttons of radius 2mm, 3mm and 4mm. Once again, we
notice significant (paired t-test, p < 0.05) performance im-
provements for all subjects except subject 3. These improve-
ments are for just 200 training examples – collection of which
would represent a very low overhead for the user. Assuming
that an increase in performance of 0.1 corresponds to a reduc-
tion in error rate of 10%, the average reduction in error rate
across all users is 23.79% (2mm buttons), 14.79% (3mm) and
5.11% (4mm).

The work in [9] suggests a theoretical lower limit of 2.15mm
for the radius of a button which can be acquired with 95% ac-
curacy. Their technique can acquire targets of radius 2.7mm,
but doing so requires an overhead camera and an algorithm to
extract salient features from the outline of the finger. Clearly
these are not reasonable restrictions in a mobile setting. Our
method achieves 95% accuracy with targets of radius between
2.8mm and 4mm, depending on the user. For all subjects bar
one, this still represents an improvement over commercially
available sensing technology of the N9.

In Figure 6 we show more detailed results for subjects 1, 3
and 8. We also give the performance of a simple linear re-
gression model (see e.g. [13] p. 22) trained on the same data.
For subject 3 we again see no significant improvement but
for subjects 1 and 8 we see that both the linear regression and
the GP outperform the N9’s native algorithm and that the GP
outperforms the linear regression, suggesting that the touch
offset is not a linear function of the touch location. Notice
also that for subjects 1 and 8, the performance is never worse
than that of the N9, whereas in predicting the intended loca-
tion from the raw sensor values, the performance was worse
when there was little training data (see Figure 4(d) and (f)).
This can be explained by the GP prior mean function, which
is set to zero. When very little data is available, the GP will
produce an output close to zero. For the offset prediction,
this will give reasonable results as the model output will not
vary much from the N9 output. However, when predicting the
location rather than the offset, it will give very poor perfor-
mance unless the touch happens to be close to the origin.

When using the N9 touch location as an input, it is possible to
visualise the offset functions that are learned across the 2D in-
put space. These are shown for subjects 1, 3 and 8 in Figure 7.
The left hand panels show the predicted offsets across the in-
put space, binned into a 10×5 grid. The size and direction of
the offset for each touch which falls in a given box is shown
relative to the center of that box. This binning is done only
for ease of visualisation — all calculations were done with
the continuous offset functions. The centre and right panels
show the continuous horizontal and vertical offset functions.
White corresponds to a large positive value (to the right or up
for horizontal and vertical offsets respectively) and black a

Figure 9. Log determinant of the predictive covariance matrix for sub-
ject 1 when the N9’s touch location is used as an input.

large negative value (to the left and down). We see very small
offsets for subject 3, reflecting the fact that the N9 input is al-
ready very accurate. For users 1 and 8, it is immediately clear
that the offset functions are highly non-linear. The horizontal
offset functions have two reasonably flat areas separated by a
steep ridge. Recall that the user is operating the system with
two thumbs (see Figure 2) and this ridge represents the point
at which the thumb they are using changes. The vertical off-
sets are more complex, likely reflecting the change in thumb
orientation as it reaches up and down.

To show the relative limitations of the linear model, Figure 8
shows the linear offsets learned for subject 8. Comparing
these with the bottom row in Figure 7, we can clearly see the
subtleties lost by the linear model. In particular, the horizon-
tal offset in the linear model changes smoothly from left to
right, completely missing the sharp change required towards
the centre of the device where the user changes thumbs.

Predictive covariance
The Gaussian Process prediction consists of a Gaussian den-
sity. Thus far we have just used the mean of this Gaussian as
a point estimate. The covariance of the Gaussian is also use-
ful as it describes the uncertainty in the prediction and could
therefore be used at the application level. In Figure 9 we visu-
alise the log determinant of the predictive covariance matrix
(higher corresponds to greater uncertainty) for subject 1 when
the N9 touch location is used as an input. The highest uncer-
tainty is at the edges, representing the limit of the recorded
data. There are also areas of higher uncertainty down the
centre and in the centre left and right areas. The centre area
can most likely be explained by the user changing thumbs in
this area – they will not always change at exactly the same
horizontal position and therefore uncertainty in the required
offsets is natural. This information about the uncertainty is a
further advantage over the polynomial function of [6], which
only gives a point estimate of the offset. We discuss other
uses of predictive uncertainty below.

Generalising Results
To ensure that the results described above were not specific
to a particular device and orientation combination, we car-

471

(a) Subject 1 binned offsets. (b) Subject 1 horizontal offset function. (c) Subject 1 vertical offset function.

(d) Subject 3 binned offsets. (e) Subject 3 horizontal offset function. (f) Subject 3 vertical offset function.

(g) Subject 8 binned offsets. (h) Subject 8 horizontal offset function. (i) Subject 8 vertical offset function.

Figure 7. Offsets learned for subjects 1, 3 and 8. All panels represent the lower half of the N9 screen when in landscape mode. The left hand plot shows
the offsets inferred by the GP for the actual touch data and the right two the continuous horizontal and vertical offset functions learned by the GP.

ried out a number of additional experiments. First, we had
two subjects (1 and 6) each generate 1000 additional touches,
with the N9 in a portrait orientation. Users held the device
in one hand and touched using the thumb on that hand. The
touch targets were generated in the region corresponding to
the device’s portrait virtual keyboard. While significant con-
clusions cannot be drawn for a sample of two, the results of
this probe are included to contextualise our core results.

Figure 10 shows our results. Again, we computed the virtual
button accuracy as our performance metric ((a) and (c)). We
used the raw sensor values of the touches as the input to the
GP. For both users, we see that the GP is more accurate than
the N9’s native algorithm. These GPs were based on the op-
timal parameters found from the cross validation on the land-
scape data, showing that the covariance parameters generalise
well across orientation. The learning curves (10(b) and (d))
show that the GP outperforms the N9 after approximately 300
training points are generated. An interesting future research
direction is the development of a model which can predict
touch location regardless of device orientation. This is poten-
tially possible since even when touching the same location,
the sensor readings are likely to be different across the differ-
ent orientations.

We also replicated our experiment on a Google Nexus One
running Android. Since this device does not expose the raw

sensor values in the screen, we were restricted to considering
the prediction problem using the device’s reported touch lo-
cation as input. We had two subjects (1 and 3) generate 1000
touches in landscape mode. The protocol was identical to
the original experiment. Virtual button accuracies and learn-
ing curves for the GP, Android phone and a linear model are
shown in Figure 11. Once again we see that the GP outper-
forms both competing models for all button sizes. Note also
that one of the users shown is subject 3, for whom the GP
offered no improved performance on the N9. On the Android
phone, we see a large improvement for this user when using
the GP. As with the N9, the learning curves are below the de-
vice performance for even very small quantities of training
data. This can again be attributed to the zero mean of our GP.

Importance of user-specificity
In Figure 7 we saw that the offset functions learned varied
greatly across users. To quantify what this means in terms of
performance, we carried out an additional experiment where
we trained on a mixture of data from all subjects and evalu-
ated the test performance of the resulting model on the data
for each individual. Figure 12 shows our results. For each
subject, two box plots are shown. The first shows the im-
provement in accuracy for a 2mm button over the N9 when
training on 600 of that subject’s touches. The second shows
the performance improvement when the model is trained on

472

(a) Subject 8 binned offsets. (b) Subject 8 horizontal offset function. (c) Subject 8 vertical offset function.

Figure 8. Offsets learned by linear regression for subject 8.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Button Radius (mm)

P
ro

po
rti

on
 o

f T
ou

ch
es

 In
si

de
 B

ut
to

n Virtual button accuracy

N9
GP

(a) Subject 1

200 400 600 800

1.5

2

2.5

3

3.5

Number of training examples

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Subject 1

N9
GP

(b) Subject 1

1 2 3 4 5 6 7
0.2

0.4

0.6

0.8

1

Button Radius (mm)
P

ro
po

rti
on

 o
f T

ou
ch

es
 In

si
de

 B
ut

to
n Virtual button accuracy

N9
GP

(c) Subject 6

200 400 600 800

1.5

2

2.5

Number of training examples

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Subject 6

N9
GP

(d) Subject 6

Figure 10. Virtual button accuracy and learning curves for portrait touches

600 touches drawn at random from the data for all subjects.
This experiment was done using the device location as the
GP input. Improvements were also seen for 3mm and 4mm
buttons (results not shown).

In all cases, the performance improvement for the user-
specific models is higher than that for the model trained on
all subjects. The differences are statistically significant for
all subjects (paired t-test, p < 0.05). For subject 3, whose
touch behaviour is significantly different from the norm
(as evidenced by the earlier results), training on the other
subjects’ data results in a notable decrease in performance
compared to the N9. Thus it is clear that there is significant
variation between users, and that training user-specific
models is advantageous.

DISCUSSION AND FUTURE WORK

Data Collection
Key to this approach is the collection of training data. There
are several ways in which this could be done with minimal ef-
fort from the user, described below. Investigating the practical
feasibility of these approaches is an area for future research.

One method for generating the data would be to make use of
a calibration game [5]. In [6] a similar approach has been ap-
plied and was very successful. With such a tapping game it
would be easily possible to generate the required number of
touches in a recreational setting. Note that in [6], users pro-
vided, on average, many more touches than needed for our
approach. An alternative would be to use keyboard entry as a
source of training data. Since the approach described in this
paper only requires approximately 200 touches (when pre-
dicting from the device’s reported touch location) to perform

1 2 3 4 5 6 7 8
−0.2

−0.1

0

0.1

0.2

0.3

0.4

Subject

Im
pr

ov
em

en
t o

ve
r N

9

User Specific vs. Pooled Data Models

Figure 12. Improvements in accuracy rate for 2mm virtual buttons when
using a user-specific model (left hand box plot in each case) and a model
trained on all users (right hand box plot).

significantly better than the native touch location, writing one
long email might already provide enough input data to train.
Such an approach could be used in conjunction with the au-
tomatic keyboard optimisation proposed by [2]. In addition,
the success of [7] showed that it is possible to combine typing
and a calibration game.

Another possibility would be to introduce a new unlock
method that collects the required data. Most mobile phones
can be secured by a four digit PIN needed to unlock the
device and this can serve as a data collection point. By
arranging the numbers randomly on the screen the user

473

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Button Radius (mm)

P
ro

po
rti

on
 o

f T
ou

ch
es

 In
si

de
 B

ut
to

n

Virtual button accuracy

Android
GP
Linear

(a) Subject 1, Android

200 400 600 800

1.4

1.6

1.8

2

2.2

2.4

Number of training examples

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Subject 1

Android
GP
Linear

(b) Subject 1, Android

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Button Radius (mm)

P
ro

po
rti

on
 o

f T
ou

ch
es

 In
si

de
 B

ut
to

n

Virtual button accuracy

Android
GP
Linear

(c) Subject 3, Android

200 400 600 800

1.8

2

2.2

2.4

Number of training examples

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Subject 3

Android
GP
Linear

(d) Subject 3, Android

Figure 11. Performance on Android phone

would need to touch on different places each time he wants
to unlock his device. This could generate the needed touches
in approximately 50 unlock procedures. Furthermore the
approach would be safe against so-called smudge attacks
[1] - reconstruction of frequently used patterns through oily
residues on the screen - since the positions of the unlock
digits would vary and no common pattern should emerge.
The only drawback of this mechanism would be that users
would not be able to generate a muscle memory to quickly
unlock the device.

For longitudinal usage an iterative recalibration might be nec-
essary since users might generate certain habits in touching
or holding the device. A constant update e.g. using the key-
board approach as discussed above could be a feasible way
of adapting the touch accuracy that might actually be capa-
ble of coping with temporary impairments such as a sprained
thumb.

Predictive variance and uncertainty handover
The GP regression is naturally probabilistic, providing as its
prediction a Gaussian density. Whilst we have only used the
mean value in our accuracy calculations, the covariance could
be useful from both a design perspective and an interaction
perspective. Knowing which areas of the input space are the
hardest to model (for example, the vertical strip in the centre
when the user is using two thumbs in landscape mode, see
Figure 9) can help in deciding where to place different sized
buttons. Being able to model this in a user-specific manner
could lead to devices that could optimise layout for accu-
racy as more data is acquired. From an interaction point of
view, including uncertainty in input opens up the possibil-
ity of building schemes where autonomy can be transferred
from the user to the device as shown in [15]. For example,
uncertainty in touch locations could be used to produce a dis-
tribution over which key the user intended to press when op-
erating a keyboard. This distribution could be fed forward
into a probabilistic language model allowing for potential im-
provements in text entry accuracy. In [17] Schwarz et al pre-
sented a model which used uncertainty information to select
between several small, closely packed buttons. The authors
used a Gaussian centered on the detected touch area to repre-
sent the uncertain touch, but it is clear that the touch area is
not necessarily a good indication of the intended target. The
distributions produced by the GP automatically account for

the offset and allow the full covariance structure to be learned
for all parts of the space — using this information in appli-
cation frameworks is a promising research direction which
could open up new channels for rich touch interaction.

Computational complexity
Key to the success of a method like this is the ability to de-
ploy it in real time on a mobile device. The GP regression
approach has two distinct phases: training, involving invert-
ing a square matrix of size 2 × N (where N is the number
of training touches) and predicting, which involves creating
a covariance matrix and performing a matrix multiplication
for each new touch event. The multiplications required for
predictions will scale with the number of training examples.
In our experiments, we found significant improvements for
400 training points (when the sensor data is used as input)
and 200 (when the device’s reported touch location is used).
With matrices of this size, the operations are easily feasible
on all modern mobile devices. In addition, our experiments
used randomly placed training locations and it is highly likely
that smarter position of these (perhaps using an active learn-
ing strategy), coupled with a sparse regression algorithm (e.g.
[19]) could reduce the size of training sets further.

Incorporating additional data
GP regression provides a principled and flexible framework
for incorporating additional data into the prediction task
through combinations of covariance functions (see e.g. [12]).
For example, one could include the current output from
the accelerometers built into most mobile devices. This
could allow the model to automatically adapt to different
device orientations or different device usage contexts. For
example, the model could adapt to give greater uncertainty
in the predictions when the user is walking. In the text-
entry scenario described above, the increased uncertainty
would automatically give more influence to the probabilistic
language model. The ability of the GP to probabilistically
incorporate streams of data from multiple sensors is a key
strength of our approach, and makes the GP a powerful tool
for modelling uncertain interaction.

Multiple users on one device
One drawback of a user-specific model is when multiple users
use the same device. One way to overcome this would be to

474

allow the user to switch the adaptive model on or off, de-
pending on who was using the device. Alternatively, it may
be possible to automatically infer the particular user from the
touch characteristics (particularly if raw sensor data is used)
or estimated keyboard error rates (e.g. if the user starts mak-
ing many mistakes) and switch the predictive model on and
off accordingly.

CONCLUSIONS
In this paper we demonstrated the feasibility of a user-specific
machine learning approach based on GP regression to in-
crease user specific touch accuracy. Using raw sensor input
from a capacitive touch screen we were able to improve touch
accuracy on average by 23.47% for a 2mm button, 14.20% for
a 3mm and 4.7% for a 4mm button. We also demonstrated
that the approach using the touch location reported by the de-
vice as input resulted in slightly better performance, with ac-
curacy increasing on average by 23.79% for a 2mm, 14.79%
for a 3mm and 5.11% for a 4mm button. This has the poten-
tial to both improve the user experience and allow for smaller
sized buttons.

We found that our approach worked in both portrait and land-
scape modes and across two different devices. As shown in
[6], user-specific offsets exist in all devices studied and our
improvements are therefore unlikely to be restricted to the
two devices studied here.

A key finding in this research is that optimal offset functions
are highly nonlinear, both horizontally and vertically and vary
dramatically over the touch area and over users. For most
users, the proposed GP approach considerably outperforms a
linear model trained on the same data. User-specific models
also outperformed models trained on pooled data, highlight-
ing the diversity in user behaviour.

This work provides the basis for a wide range of further re-
search. We have a flexible GP regression framework with
which we can incorporate data from multiple sensors to in-
telligently deal with the inherent uncertainties of touch inter-
action. With this rich predictive model, we can easily build
improved systems for important tasks such as text entry. Fur-
ther, we can use the predictive uncertainty to respond appro-
priately and automatically to a range of usage contexts, or to
negotiate the handover of autonomy between user and device.

ACKNOWLEDGEMENTS
Daryl Weir is supported by a PhD studentship from the Scot-
tish Informatics and Computer Science Alliance (SICSA).
Nokia provided equipment and funding to support this re-
search.

REFERENCES
1. Aviv, A. J., Gibson, K., Mossop, E., Blaze, M., and

Smith, J. M. Smudge attacks on smartphone touch
screens. In WOOT ’10, 1–7.

2. Baldwin, T., and Chai, J. Towards online adaptation and
personalization of key-target resizing for mobile
devices. In IUI ’12, 11–20.

3. Baudisch, P., and Chu, G. Back-of-device interaction
allows creating very small touch devices. In CHI ’09,
1923–1932.

4. Findlater, L., and Wobbrock, J. O. Personalized Input:
Improving Ten-Finger Touchscreen Typing through
Automatic Adaptation. 815–824.

5. Flatla, D. R., Gutwin, C., Nacke, L. E., Bateman, S., and
Mandryk, R. L. Calibration games: making calibration
tasks enjoyable by adding motivating game elements. In
UIST ’11, 403–412.

6. Henze, N., Rukzio, E., and Boll, S. 100,000,000 taps:
Analysis and improvement of touch performance in the
large. In MobileHCI ’11,

7. Henze, N., Rukzio, E., and Boll, S. Observational and
experimental investigation of typing behaviour using
virtual keyboards on mobile devices. In CHI’12,

8. Holz, C., and Baudisch, P. The generalized perceived
input point model and how to double touch accuracy by
extracting fingerprints. In CHI ’10, 581–590.

9. Holz, C., and Baudisch, P. Understanding touch. In CHI
’11, 2501–2510.

10. Lee, S., Buxton, W., and Smith, K. C. A multi-touch
three dimensional touch-sensitive tablet. In CHI ’85,
21–25.

11. Parhi, P., Karlson, A. K., and Bederson, B. B. Target size
study for one-handed thumb use on small touchscreen
devices. 203–210.

12. Rasmussen, C. E., and Williams, C. K. I. Gaussian
Processes for Machine Learning. MIT Press, 2006.

13. Rogers, S., and Girolami, M. A First Course in Machine
Learning. Chapman and Hall / CRC, 2011.

14. Rogers, S., Williamson, J., Stewart, C., and
Murray-Smith, R. Anglepose: robust, precise capacitive
touch tracking via 3d orientation estimation. In CHI ’11,
2575–2584.

15. Rogers, S., Williamson, J., Stewart, C., and
Murray-Smith, R. Fingercloud: uncertainty and
autonomy handover in capacitive sensing. In CHI ’10,
577–580.

16. Saponas, T. S., Harrison, C., and Benko, H.
Pockettouch: through-fabric capacitive touch input. In
UIST ’11, 303–308.

17. Schwarz, J., Hudson, S., Mankoff, J., and Wilson, A. D.
A framework for robust and flexible handling of inputs
with uncertainty. In UIST ’10, 47.

18. Schwarz, J., Mankoff, J., and Hudson, S. Monte carlo
methods for managing interactive state, action and
feedback under uncertainty. In UIST ’11, 235.

19. Tipping, M. Sparse Bayesian learning and the Relevance
Vector Machine. Journal of Machine Learning Research
1, 211–244.

20. Williamson, J. Continuous Uncertain Interaction. PhD
thesis, University of Glasgow, 2006.

475

