
Sketchplore: Sketch and Explore with a Layout Optimiser
Kashyap Todi1,2

kashyap.todi@uhasselt.be
Daryl Weir1

daryl.weir@aalto.fi
Antti Oulasvirta1

antti.oulasvirta@aalto.fi
1Aalto University
Helsinki, Finland

2Hasselt University - tUL - iMinds
Diepenbeek, Belgium

+

Local
Optimiser

Global
Optimiser

Search
Space

Predictive Models Explore

Canvas

Timeline

Current Design
Design Space

Real-Time Optimisation Sketchploration Environment

Figure 1: Sketchplorer is an interactive layout sketching tool supported by real-time model-based optimisation. The tool is
designed to facilitate the creative and problem-solving aspects of sketching without requiring extensive input. While a designer
is sketching, a design task is automatically inferred. The optimiser uses predictive models to make suggestions for local and
global changes that improve usability and aesthetics. Suggestions appear on the side, and never override the designer’s work.

ABSTRACT
This paper studies a novel concept for integrating real-time
design optimisation to a sketching tool. Although optimi-
sation methods can attack very complex design problems,
their insistence on precise objectives and a point optimum is
a poor fit with sketching practices. Sketchplorer is a multi-
touch sketching tool that uses a real-time layout optimiser. It
automatically infers the designer’s task to search for both lo-
cal improvements to the current design and global (radical)
alternatives. Using predictive models of sensorimotor perfor-
mance and perception, these suggestions steer the designer
toward more usable and aesthetic layouts without overriding
the designer or demanding extensive input.

Author Keywords
Sketching; Model-based optimisation; Visual Layouts

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DIS 2016, June 04–08, 2016, Brisbane, QLD, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
© 2016 ACM. ISBN 978-1-4503-4031-1/16/06$15.00
DOI: http://dx.doi.org/10.1145/2901790.2901817

INTRODUCTION
This paper is motivated by the observation that optimisation
methods have great untapped potential in design tools. We
focus on the activity of sketching layouts, in which a designer
places, colours, organises, and defines elements on a canvas.
From a combinatorial perspective, the design of layouts is no-
toriously hard. For a canvas of 1024×768 pixels, divided into
a 24×32 grid, as in the tool presented here, there are 158,400
one-element layouts and a whopping 1041 eight-element lay-
outs. Although algorithms may not be able to find the op-
timal solution in such large search spaces, they can “paral-
lelise” search, and find candidate solutions and suggest them
to designers. This could help designers in exploration, who
are known to be limited to a handful of designs per iteration
[8]. Also, algorithms can complement designers by explor-
ing design spaces neutrally without being constrained by past
experiences, to produce designs that the designer might not
otherwise conceive. Employing an optimiser might also im-
prove the quality of designs for end-users (see [12, 33, 45]).

However, several hard research challenges emerge. First, lay-
out design is a complex, multi-objective task addressing not
only usability but also aesthetic qualities [15, 44]. Presently
no algorithmic approach exists that can address both. Sec-
ond, optimisation typically takes a long time, due to combi-
natorial complexity, and no solution has been shown for fast-
paced, iterative design of layouts. Third, although optimisa-
tion methods can attack very complex design problems, their

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

543

insistence on precise inputs contradicts sketching. To better
fit with design practice, optimisers should radically reduce the
effort for defining tasks (see e.g., [2]). Crucially, they should
not attempt to override design thinking. Instead, final deci-
sions should be left to designers, who possess knowledge that
computers might not.

This paper investigates ‘sketchploration’, a novel concept to
exploit interactive optimisation methods in design tools and
in particular for layout sketching. We approach sketching
as a problem-solving activity and a tool for visual thinking
[6, 30]. The goal is to enable access to results of real-time
optimisation, yet impose as few control requirements on the
designer as possible, in order to support the natural flow of
sketching. For this end, Sketchplorer, illustrated in Figure 1,
relaxes typical requirements for controlling an optimiser in
a way that respects the design process. Unlike with previ-
ous solutions (e.g., [2, 12]), no additional input is required
from the designer. As the designer sketches, the system in-
fers the designer’s task automatically. The optimiser simul-
taneously searches for local improvements (small changes),
and explores global alternatives (large changes). Importantly,
it deploys several predictive models of user performance and
perception adapted from literature. This allows it to make in-
formed suggestions that “pull” the designer toward usable and
aesthetic designs. Sketchplorer does not override the design-
ers’ sketch, but presents optimised designs as glanceable sug-
gestions. Technically, sketchploration extends model-based
interface optimisation [2, 12, 45] to real-time design explo-
ration under ill-specified and changing design goals.

This paper presents the first investigation of the concept, fo-
cusing on interactive layouts familiar from GUIs, web pages,
menus, and dialogs. It complements existing work by show-
ing how an interactive optimiser can be integrated with fast-
paced and unconstrained early-stage sketching. Our imple-
mentation presently supports 10 common types of elements
and hierarchical (nested) placement. But concept could be
implemented for any sketching tool that affords extending the
workspace and communication with a server. The technical
contributions include:

1. Design principles for integrating a model-based interface
optimiser to a sketching tool.

2. Extension of model-based interface optimisation to inter-
active layouts by: 1) Formulation of (unconstrained) lay-
out sketching as an optimisation problem, allowing for ad-
dressing the positions, sizes, and colours of elements. 2) A
novel, theoretically informed objective function address-
ing five aspects important in layout use: perception of clut-
ter, visual search performance, pointing performance, grid
quality, and colour harmony.

3. A dynamic optimisation approach that 1) infers the de-
signer’s task from the current layout, 2) simultaneously ex-
plores and exploits in the design space and 3) reacts rapidly
to changes in the current sketch.

We report results from two empirical evaluations—with end-
users and with trained designers. We conclude that interactive
model-based optimisation warrants more attention.

PRIOR ART: SKETCHING TOOLS AND UI OPTIMISATION
Our goal is to support sketching with computational meth-
ods. In this work, we investigate sketching as a tool for visual
thinking and problem-solving, and do not delve into freehand
drawing and rendering aspects of sketches. When understood
as problem-solving, sketching is characterised by its quick,
ambiguous, and uncertain nature [13, 42]. The goal of de-
signers is not a point design, but rather exploration. Sketching
unfolds as an iterative process of idea-generation, refinement
(exploitation), and redefinition. Designers entertain multiple
hypotheses and may backtrack to previous designs. Details to
a sketch are added gradually, and they can be changed at any
stage. Idea-generation in sketching has recognised limits and
biases [8]. These properties make sketching both a challenge
and an opportunity for computational support.

Sketching Tools and Interaction Techniques
Research on computational support for sketching originates
from Sutherland’s Sketchpad [37], which highlighted the ben-
efits of a digital medium. We refer to a recent review [17] and
here point out a few main trends in research.

First, improved recognition technologies have brought pen-
and-paper like techniques to sketching [41]. Second, sev-
eral interaction techniques have been proposed to enhance
the drawing of shapes in sketching (e.g., [1]). Third, some
approaches have looked at integration with other activities
in design, and a better support for going back and forth be-
tween designs. SILK [23] and DENIM [25] explored several
such techniques. Fourth, sketching has been extended from
2D spatial displays. For example, [19] enabled sketching for
animations and dynamic authoring of illustrations. Fifth, de-
sign heuristics have been implemented in sketching tools. Ex-
amples include colour palettes [29], template-based sketching
[18], and design guidelines. While these ensure that designs
meet certain standards, they allow neither exploring designs
nor refining them for some objectives.

Heuristic and Data-Driven Methods for Layout Generation
Heuristic approaches to layout generation have explored bal-
ance, consistency, or the golden cut (e.g. [11, 27]). Although
heuristics can produce results that are visually appealing and
resemble real designs, they do not predict effects on end-
users. They lack means for conflict resolution. To our knowl-
edge, there are no heuristic approaches that solve both spatial
and visual aspects of layout.

Data-driven approaches such as Webzeitgeist [22] mine a
large number of designs and can produce new ones for de-
signer given inputs. Although colour, size, position, and
grouping can be addressed, the approach results in basically
“mimicry” of existing designs. It does not offer a principled
way of setting objectives for goals like usability and aesthet-
ics. They offer no guarantee that the outcomes are good be-
yond visual appeal.

Some work has been done on automatic generation and im-
provement of static graphical media such as posters, flyers, or
slides. [31] used an energy-based model considering aesthetic
heuristics, such as alignment, balance, and flow. DesignScape

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

544

[32] is a tool for assisting novice designers in creating graph-
ical media. While our work, at first glance, resembles De-
signScape, the assumptions and underlying mechanisms of
the two systems are very different. DesignScape does not
consider interactive layouts, which form the basis of GUIs.
Additionally, the tool is meant to improve final-stage designs,
based on realistic content. It is not designed for the uncer-
tain and ambiguous nature of initial-stage sketching, where
the actual content is still subject to change. With regard to
underlying optimisation mechanisms, DesignScape uses a re-
duced design space which does not include element colour,
and makes simplifying assumptions about aesthetics rather
than using validated predicitive models from psychology.

Finally, there has been extensive work on automating lay-
out generation based on constraint satisfaction. Interfaces
are specified as a set of semantic and spatial constraints, and
solver programs generate possible designs for given screen
sizes. [26] reviews these techniques. However, the con-
straints still have to be constructed by a designer, and more-
over the generated layouts have no guarantees about aesthetic
quality or interaction performance.

Model-based Optimisation
Model-based user interface optimisation uses combinatorial
optimisation to automate interface generation. The idea is
to represent a design problem and design knowledge (e.g.,
user simulations, models, heuristics) as an objective function
for a search algorithm that iteratively improves designs for
the stated objectives. Unlike heuristic approaches, model-
based optimisation relies on theories and predictive models
of how users interact or perceive a layout and an algorithm
that searches the design space systematically. The most well-
known layout problem is the letter assignment problem. Fitts’
law can be used together with bigram data on transition fre-
quency to find keyboard layouts that minimise expected fin-
ger travel distance [24]. This idea has been extended to wid-
get layouts in SUPPLE using branch-and-bound [12].

The first interactive design tool following model-based opti-
misation was MenuOptimizer [2]. It uses a model of menu
search together with a consistency heuristic to optimise hi-
erarchical menus for application. It integrated several types
of support to the QtDesigner development environment. It
introduced an interactive optimiser that proposed global and
local changes like moving a menu item to improve user per-
formance. However, it was designed for “point optimisation”
and contained an overwhelming amount of controls and vi-
sualisations and insisted on problem specification for the op-
timiser. The authors concluded that designers mostly used
global suggestions (suggestions for the whole menu system).

WALKTHROUGH AND DESIGN OVERVIEW
We had four objectives for integrating computational support
to a design tool:

1. Support quick and ambiguous sketching, and leave room
for uncertainty, by providing capabilities to defer the task
of specifying details at any stage of the design process.

2. Allow fluent shifts between exploration and refinement.

3. Provide support for multiple hypotheses, and give an
overview of progress, by providing a non-destructive, and
editable, timeline of previous alternate designs.

4. Minimise user actions not related to the design activity it-
self by inferring details whenever possible.

5. Eliminate ambiguity, in designers’ minds, while perceiving
optimised results by communicating with the designer in a
timely and predictable manner.

Walkthrough: Designing a Blog Page
This walkthrough illustrates the use of Sketchplorer from a
designer’s perspective.

Sketching the initial layout: Sketchplorer initially presents
the designer with an empty canvas. The designer starts
sketching by creating a structure for her design (Figure 2a).
Drawn elements can be moved around, or resized, at any time.
She ambiguously sketches out boxes, serving as proxies for
the elements of her blog page. Sketchplorer dynamically in-
fers hierarchy of elements, and does not require the designer
to explicitly specify ordering or grouping. It starts computing
both local and global suggestions in the background.

Refining and adding details: An inspector panel, similar to
most commercial sketching tools, sits on the right-edge of the
display, and can be pulled out at any time. This can be used to
specify details, such as the element type, colour, and impor-
tance (usage probability) of objects on the canvas (Figure 2b).
The designer now adds details to some of the elements. For
instance, she indicates that her blog page has a heading and
a paragraph element, and marks them as being of high im-
portance for the optimiser. She also specifies that the image
(site logo) is of low importance. Satisfied with the first ver-
sion of the design, she taps the save (‘+’) button. This adds
the current design to the designer’s timeline, and provides a
preview. The designs here can be retrieved, and edited, at any
later time. This enables the designer to see the evolution in
designs, borrow previous ideas, and select feasible alterna-
tives.

Fine-tuning and local changes: While the designer sketches
and refines, the system continuously streams the description
of the current design to the optimiser. The local optimiser
uses the current design as a starting point to suggest fixes
and provide recolour options. Pulsating icons in the inspec-
tor panel appear when fix and recolour options are available
(Figure 2c). The designer refers to these suggestions. She re-
alises that by using the recolouring suggestion, she can make
the paragraph of text stand out. She chooses one of the re-
coloured layouts, and continues working on her sketch.

Exploring new designs: By abstracting from the current de-
sign, the global optimiser retrieves unique designs, and re-
turns them to the designer. An explore panel, residing on the
left edge of the display (Figure 2d), is periodically updated
with these designs. The designer browses through the list of
alternatives, and finds two interesting alternatives. She adds
the first to her list of saved designs, and drags the second onto
the canvas, to continue working on it.

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

545

Canvas

Inspector

Explore
Importance
Levels

Timeline

Recolour/Fix

Figure 2: Overview of Sketchplorer. A large canvas is surrounded by the various features. Designers can (a) ambiguously sketch
layout designs, and (b) refine and add details. They have immediate access to a timeline of saved designs. They can improve
designs by (c) using fix and recolour suggestions, or (d) exploring globally optimised designs.

In a short duration, the designer’s collection of saved lay-
outs is populated with several feasible alternatives—some
sketched by the designer, and the others with the aid of the
optimiser. While the above phases appear to be linear, in
practice, sketching and exploration phases are intertwined.

Overview of Interactions
Sketchplorer is designed for a multitouch environment using
a large display, and uses touch gestures for all controls.

Sketching and refinement: Sketchplorer allows designers to
either sketch ambiguous bounding boxes for layout elements,
or pick out a specific element type and draw it on the canvas.
It takes care to accurately order every element on the canvas,
without requiring the user to explicitly bring-to-front or send-
to-back. Each time an element is changed, so as to change the
hierarchy, the ordering is dynamically adapted. Hierarchical
groups of elements can be selected and manipulated at the
same time. This inferred hierarchy is also essential for the in-
ternal representation of a layout in the optimiser. The colour
picker allows designers to select the hue–saturation combina-
tion, and adjust the brightness. Double-tapping on an element
reveals an in-place pop-over, and allows adding details with-
out having to move to the inspector. Individual elements’ im-
portance can be adjusted in the inspector panel. Alternatively,
an overlay can be enabled, that displays the importance of
each element, and allows batch adjustments (Figure 2b).

Saved versions and timeline: Benefits of interactive time-
lines and alternate versions have been emphasised in HCI lit-
erature [38]. In Sketchplorer, the current design can be added
to the timeline at any time. The timeline provides an overview
of all saved designs, and any alternative design, or interme-
diate sketch, can be dragged back to canvas. This allows de-
signers to compare designs, have an overview of the evolution
of their designs, and iterate over sketches.

Integration with the optimiser: To the designer, the optimi-
sation appears as a two-pronged approach, consisting of local
and global optimisation. The local optimiser listens in on ev-
ery change in the design, including changes in sizes and posi-
tions of elements. It creates fine-tuned designs, that maintain
the overall composition of the original sketch, but improve
certain aspects of it. Recolouring suggestions maintain the
sizing and placement of elements, and offer harmonious re-

colouring suggestions, which also improve aesthetics and per-
formance. In contrast, the global optimiser listens exclusively
to changes in design tasks, and acts upon them. It abstracts
away from exact details, allowing it to explore the entire de-
sign space, and generate unique designs. It performs explo-
ration in real-time and periodically returns improved results
that are immediately displayed to the designer in an expand-
able explore panel. The optimiser focuses on creating unique
and improved solutions, not on refining or polishing a solu-
tion to make them perfect.

PREDICTIVE MODELS FOR INTERACTIVE LAYOUTS
Sketchplorer is the first user interface optimiser using mod-
els of human performance and perception to optimise both
spatial and colour aspects of interactive layouts. We chose
models that cover both aesthetic features, such as symme-
try, and sensorimotor performance measures, such as target
selection time. The models have also been validated in em-
pirical studies and shown to align with user preferences and
performance. In this way, we aim to produce layouts that are
aesthetically pleasing and usable in a predictable way. How-
ever, note that the choice of models in the system is flexible.
If there is evidence for another model being better than those
we use currently, it is very simple to add this without chang-
ing the workflow of Sketchplorer.

Overview: The Colour Patches Task
In order to examine the effect of optimising for a model as an
objective, and learn how the models affect optimisation, we
created the colour patches task. Here, the optimiser’s goal is
to assign five rectangular elements to a 5 × 5 grid. Each ele-
ment is a block or patch with a single colour. We assume that
each patch is interactive, with a certain probability of being
targeted. We sample these probabilities from a Zipf distribu-
tion. These probabilities are used to weight the average visual
search and target acquisition times using a formula given later
in the paper. To produce candidate designs, we traverse the el-
ements in a random order and pick a random colour, size and
position for each. The colours are chosen from Kelly’s set
of perceptually distinct colours [20], and the sizes are cho-
sen randomly from three fixed sizes. For each objective, we
evaluate many random designs to find the one with the low-
est objective value, then perform small changes to search for
local improvements in the design.

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

546

3

1

4

2
5

(a) Clutter

5

3

1 2

4

(b) Visual search

3

1

4
2

5

(c) Target acquisition

3

1

4

2

5

(d) Grid quality

3

4

5

2

1

(e) Colour harmony

Figure 3: Results for the colour patches task. These five layouts are outcomes when optimising for a single objective at a time.
Sketchplorer combines these objectives into multi-objective search. Numbers refer to a ranking based on frequency of use.

Figure 3 shows the results. Elements are numbered by their
usage probability, with 1 being the most common. The results
show that each objective focuses on either spatial or colour-
ing aspects, but may ignore or contradict the others. In the
following sections, we will detail these results.

Visual Clutter
We use the Rosenholtz model [34] to minimise visual clut-
ter. The idea is that as more objects are added to a display,
it becomes more difficult to place a new object that it is per-
ceptually unique and easy to identify. The layout elements
have some distribution of visual features. As the number of
elements grows, the feature distribution occupies more of the
available space. This model has been shown to correlate with
user perception of clutter, a correlate of aesthetic preference.

Given vectors of the features for each object on the display,
we compute the mean and covariance Σ of these vectors. In
our implementation, we consider only colour in our feature
vector. The clutter of the display is then defined simply as the
determinant of the covariance matrix, |Σ|. This can be thought
of as the volume of the 1 s.d. covariance ellipsoid. We take
the inverse of the clutter score for the objective function.

Figure 3(a) shows the colour patch results for this model.
Each item has the same colour, which makes sense as this
choice minimises the volume of the colour covariance.

Visual Search
We implement the Kieras-Hornof model of visual attention
[21] to maximise visual search performance by enhancing the
perceptual uniqueness of commonly searched elements.

Prediction consists of two parts: (1) a set of availability func-
tions determine whether the features of a target are perceiv-
able from the user’s current eye location; and (2) a simple
GOMS-style algorithm estimates the time in milliseconds re-
quired to locate the target.The availability functions are based
on the eccentricity from the current eye location e and an-
gular size s of the target. Additive Gaussian random noise
with variance σ2 = vs proportional to the size of the target
is assumed. For each feature, a threshold t is computed as
t = ae2 + be + c and the probability that the feature is perceiv-
able is given by:

P(available) = 1 − Φ

(t − s
σ2

)
, (1)

where Φ(x) is the c.d.f. of the standard normal. We further
define P(available) = 1 when e < 1°, since targets in the
fovea are always perceived.

We use parameter values from the original paper, which were
shown to accurately predict visual search time for data from
an older study [40]. Note that our implementation only uses
colour as an availability feature, since the authors found size
and shape could only reliably be perceived for targets close to
the fixation location.

For memory effects we use a simple logarithmic model based
on the number of previous acquisitions. We optimise assum-
ing the user is an expert and has visually searched the inter-
face 1000 times in total. However, this assumption can be
easily changed for example to account for novices.

Figure 3(b) shows the visual search colour patches. Each item
has a different colour to make it visually unique, and all items
are clustered in the top left of the grid, where the simulated
search begins. More important items are closer to the left cor-
ner. Note that this objective conflicts with the clutter metric,
which rewards layouts where everything is the same colour.
Thus, there is a tradeoff between aesthetics and visual search
performance that can be controlled by adjusting the weights.

Target Acquisition
Following previous work on performance-optimisation of
layouts [24, 45], we deploy a variant of Fitts’ law [28] as
our model of target acquisition. Fitts’ law favours transitions
between large elements at minimum distances, and estimates
the upper bound of expert pointing performance. Including
this model allows us to optimise for efficient selection of ele-
ments, rather than purely for aesthetics. T is the time it takes
for an end-effector to reach a target from a given distance D.
For target width W, T is given by:

T =
∑
r∈R

tr =
∑
r∈R

[
a + b log2

(D
W

+ 1
)]

(2)

where R is the set of responses when navigating to the target.

When optimising, we assume that users interact with the in-
terface elements using touch. We use values of a and b from a
recent study [10]. To compute D, we assume that the starting
point of the finger is the centre of the display. We compute W
according to the angle of approach. Fitts’ law parameters for

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

547

other input devices, such as the mouse, are readily available,
and the optimiser can easily be adapted for these devices.

Figure 3(c) shows the colour patches for target acquistion.
The most important element is centrally placed, close to the
assumed starting position. The other elements are arranged
around the center and have larger sizes so that they can be
acquired without moving the finger far from the center.

Grid Quality
We use the Balinsky symmetry metric [3] as a measure of grid
quality. It calculates the distance to the closest symmetrical
layout. It was shown to correlate with aesthetic preferences.

We start with the layout vertex set s = {(x1, y1), . . . , (xn, yn)},
rescaled such that the x-axis coincides with the axis of sym-
metry and the y-axis contains the centre of mass of the xi.
This is mapped to the complex plane to obtain a set zi =
xi+Iyi. These points are horizontally symmetrical if they con-
sist only of real values and complex conjugate pairs. A funda-
mental result in complex analysis states that this is equivalent
to the stipulation that all coefficients a j of the polynomial

Pn(z) =

n∏
j=1

(z − z j) =

n∑
j=0

a jz j (3)

are real. Thus, the asymmetry for a layout is obtained by con-
structing this polynomial and averaging the size of the imag-
inary parts of the coefficients. Vertical symmetry is scored in
the same way, after a simple coordinate transformation. Our
overall metric is an even weighting of these two scores.

Figure 3(d) shows the colour patches for this metric. As ex-
pected, the result is symmetric in both axes.

Colour Harmony
Harmonic colours are sets of colours that combine to provide
a pleasant visual perception. Harmony is determined by rela-
tive position in colour space. There is no universal definition
for a harmonic set. Here, we use the templates proposed in
[7]. These consist of one or two sectors of the hue wheel,
with given angular sizes. These templates can be arbitrarily
rotated to create new sets.

The distance of a layout X from a template T is given by

D(X,T) =
∑
e∈X

DH(e,T)S (e), (4)

where DH(e,T) is the arc-length distance between the hue of
element e and the hue of the closest sector border in T , and
S (e) is the saturation channel of e. If a colour falls inside one
of the sectors of T , DH(e,T) is identically zero.

In order to rapidly evaluate many layouts, we precreate a set
C of 78 harmonic sets by rotating the templates in fixed in-
crements. We define the colour harmony H by:

H(X) = min
T∈C

D(X,T) (5)

Figure 3(e) shows the colour patches with the best match to
one of the harmonic sets. Patches 1–4 have similar hues but
different saturations, and patch 5 has a hue on the opposite

side of the colour wheel. Together these colours form a har-
monic set with the Y-template defined in [7]. Note that the
placement and ordering of the patches is somewhat chaotic,
since this model does not consider those factors.

Scope and Limitations
These models allow us to deal with the positions, size, align-
ment and colour of layout elements. An optimiser is able to
search for layouts that improve for user performance, but also
for aesthetic qualities. If implemented alone, each objective
drives a layouts to an unbalanced design favouring one as-
pect. A multi-objective optimiser allows finding good com-
promises. A limitation is that these models do not allow us
to deal with semantic aspects of layouts, such as naming or
grouping of elements. These decisions are currently left to
the designer, but could be incorporated in future versions if
models for these aspects are found.

DYNAMIC LAYOUT OPTIMISATION DURING SKETCHING
Layout design is a high-dimensional, NP-hard problem [9,
36]. Search is computationally expensive, as multiple objec-
tive values are calculated. Yet, when integrated with fast-
paced sketching, only brief computation times are allowed.
Further, the design problem is also under-specified, because
the designer may not have time to specify point objectives
and assumptions for each sketch.

Our approach builds on three ideas: First, we relax the re-
quirement to specify a design task to an optimiser. Instead,
we infer the “implicit” design task assumed in the sketch
currently edited. The internal representation of the design
task, in its simplest form, is comprised of the different lay-
out elements placed on the canvas, and their ‘importance’
values, if specified. Using this, We can search alternatives
without asking the designer anything. Second, we relax the
assumption that the goal is to find the optimum design. In-
stead, we run several optimisers simultaneously that explore
the design space with different assumptions. We pick a few
diverse design ideas and pass them to the designer, and let
his/her choices guide the search. Third, to accelerate search,
we make use of the observation that there are far fewer (ab-
stract) design tasks than there are (concrete) layouts. Using
this observation, we pre-train an “associative memory” that
has a good starting point for many design tasks that might oc-
cur. When Sketchplorer is running, it maps the present sketch
to the closest seed in the associative memory to offer a good
solution very quickly. By contrast, MenuOptimizer assumed
a point-optimisation goal and enforced a complete reset of the
optimiser’s state when a single element was changed [2].

Definition: Layout Design Task
Layout design is similar to the letter assignment problem
from keyboard optimisation [5] and to the layout facility
problem (LFP), where the task is to place machines with
fixed/varying size in a workshop [9, 36]. Layout design in
HCI, as we address it here, is a special case, where the goal
is to find a non-overlapping planar orthogonal arrangement
of n coloured rectangular elements so as to minimise the cost
function (see below). There are two differences to LFP: 1)
elements can be coloured; and 2) the cost function is more

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

548

complex. We make two further additions to the task. First,
we define the task to involve element types, each with unique
size constraints. Second, we allow groups. The elements can
be nested as long as their bounding box edges do not overlap.

Internally, our optimiser represents a layout as a 2D array of
pointers to information objects which store the colours, usage
probabilities, etc. of the elements. We use an efficient max-
imal empty rectangles algorithm [39] to find places in this
array where we can move or grow elements to modify the
layout. Additionally, each element also has an internal array
representing the positions of any child elements relative to it-
self. We treat the canvas in a recursive loop from the highest
to the lowest level of this hierarchy.

Objective Function
We define a multi-objective task where we seek to minimise
a weighted combination of the outputs of the five models:

U =

5∑
i=1

wiS i, (6)

where the weights wi sum to 1 and the individual objectives
S i are normalised to the range [0, 1].

In addition, we introduce two optional canvas-level con-
straints. We compute alignment following an approach simi-
lar to [4], in which we count the number of ‘alignment lines’,
or object edge positions, weighted by the average size of ob-
ject edges lying on those lines. We compute packing effi-
ciency as the proportion of the minimum bounding rectangle
for the layout elements which is empty, averaged with the
proportion of the overall canvas which is empty. These help
the optimiser improve quicker in the grid quality dimension.
They align elements horizontally and vertically and “pack”
them. However, since they aggressively push search toward
harmonic layouts, it may drive search to a local minima. We
address this by introducing a filtering stage where we com-
pare results for solution quality and diversity (see below).

Inferring the Design Task
We extract the design task by analysing the present layout be-
ing edited by the designer. We map a layout to a design task
by 1) counting the number of occurrences for each element
type, and 2) making a distinction between high and low im-
portance items for each element type.

Dynamic Optimisation
During sketching, the optimiser system runs several opti-
misers simultaneously, each exploring the design space dif-
ferently, and dedicated to a functionality in the Sketch-
plorer workspace. An overview is given in Table 1. The
optimisers deploy two search heuristics.

Variable Neighbourhood Search (VNS) [14] is a strategy
combining a neighbourhood-based meta-heuristic to a hill-
climbing algorithm. This strategy was chosen to ensure good
exploration of the design space, since it is able to increase
the search radius if the search gets stuck. It allows larger
and larger changes to be made in each iteration. In our case,

Sketchplorer Duration Search Neighbourhood Objective
Feature (s) method size and type function
Recolour 1-10 s VNS Small; only Colour only

colour changes
Fix 1-10 s VNS Small; only All

spatial changes
Explore 1-10 s AM Large; only All

spatial changes
Explore 10-120 s VNS Medium; only All

spatial changes

VNS: Variable Neighbourhood Search, AM: Associative Memory

Table 1: Sketchplorer uses a multi-threaded optimisation
strategy that both explores and exploits. To support dynamic
changes in the task, two methods are used in parallel: Vari-
able Neighbourhood Search and Associative Memory.

we run a steepest descent with different pre-set neighbour-
hood sizes. A neighbourhood is defined as a change to the
colour, position, or size of an element. Small neighbourhood
means that one iteration can only produce one change to a
layout. Large neighbourhood means that multiple changes
are allowed. The optimisers use VNS with small (e.g. 1, 2, 3)
or medium radii (e.g. 4 to 10). Figure 4 shows good and
failed designs produced in about 4 minutes on a laptop com-
puter. Since Sketchplorer is targeted towards skilled design-
ers, we take a mixed-initiative approach [16], and rely on the
designer to identify good designs, and filter out unappealing
or illogical ones.

Associative Memory (AM) [43] is executed in parallel. AM
is a memory-based learning approach to dynamic optimisa-
tion problems. The idea is to populate the memory with
good solutions offline, and map the current design task to its
closest-matching task in AM, and use that as a starting point
for search. We implemented layout remapping by searching
AM for layouts with design tasks that were supersets of the
current design, ordering the elements in each by usage prob-
ability, then searching for matched type pairs. We trained our
AM for 6,600 randomly generated design tasks. The live op-
timiser loaded the AM in advance in order to respond quickly
(within few seconds).

Filtering and Diversification of Results
Since the parallel searchers explore different parts of the de-
sign space, and we cannot show all results to the designer,
we pool the results and filter them using a bi-objective pareto
front criterion. We define this as the weighted (and nor-
malised) sum of the objective score and inter-layout distance.
Inter-layout distance is a score from 0 to 1 where 0 means
identical layouts and 1 means that all elements have different
locations. This diversifies search results and prevents identi-
cal designs from being shown to the designer.

SYSTEM IMPLEMENTATION
The tool is implemented in Objective-C. Multitouch input is
detected using PQ Labs multitouch SDK, and interactions
are recognised using customised gesture recognition. The
optimisers are written in Python, and use parallelisation for
speed-ups. When designers make changes to the current de-
sign, layout files (in JSON format) are sent from the design

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

549

www.YourLinkHere.com

www.YourLinkHere.com

www.YourLinkHere.com

www.YourLinkHere.com

www.firstlink.com
www.secondlink.io
www.thirdlink.org

Heading goes here

Heading goes here

www.firstlink.com
www.secondlink.io
www.thirdlink.org

Heading goes here

www.firstlink.com
www.secondlink.io
www.thirdlink.org

Form Field_ Form Field_

ButtonForm Field_

Button

www.YourLinkHere.com

Figure 4: Examples of (a) successful and (b) unsuccessful
global designs from the Associative Memory, before real-time
optimisation. Designs were computed from randomised start-
ing points, in 4 minutes each.

tool to the optimisers asynchronously. The optimisers run
on dedicated laptops (we use Macbook Pros), and all devices
communicate using ThoMoNetworking. Local vs. global
design changes are identified using filename tags. To avoid
outdated retrievals, the optimisers kill existing threads when
a new file is received. Generated designs are immediately
pushed back to the design tool.

STUDY 1: END-USER EVALUATION
Our first study addresses optimisation of the design of the
Windows Phone home screen. This study involves no de-
signer in the loop. The goal is evaluate our optimisation ap-
proach by testing its outputs with end-users. As the case we
chose the Windows Phone home screen, a complex design
task that could not have been addressed with previous ap-
proaches. The task allows multiple icon sizes, colours, and
positions over three pages. We compare an optimised design
against the baseline in a study where users are asked to select
applications from the home screen. As dependent variables
we look at selection time and measures of perceived aesthet-
ics. As our baseline, we implemented the factory default of a
Lumia 930 phone. Apps which were not preinstalled on the
phone were added in a random order at the end of the de-
fault menu, as in an unpersonalised order-of-installation lay-
out. Comparing against a real, commercial design provides a
hard baseline for the layout optimiser.

Optimisation Task
The inputs to the optimiser are a list of 55 apps, together with
usage probabilities from the LiveLab database [35]. We sam-
pled the primary colours from the app icons manually. When
generating layouts in the optimiser, we allowed as many 8×6
grid pages as necessary, and each icon was sized at 1 × 1,
2 × 2, or 2 × 4 grid cells. For some apps, the icon is a trans-
parency, coloured according to system-wide accent colour.
Others have icons with developer-chosen colours. For the

system-coloured icons, the optimiser was free to choose from
a set of 20 perceptually distinct colours [20].

Optimisation follows a different approach than in the live,
dynamic optimisation task. We here performed multiple
restarts of a random search procedure with different objec-
tive weights. For each weight set, we generated and evalu-
ated 10,000 random layouts, then performed 3000 iterations
of local search around each of the best three designs.

The menu with the best score over all weight sets was chosen
as the design to evaluate with users. The models predicted
that our optimised design would be better than the baseline in
terms of visual search (score 0.106 vs. 0.117, a difference of
∼270ms), selection (0.108 vs 0.104, ∼90ms), and grid quality
(0.005 vs. 0.013), similar in colour harmony (both 0.015),
and worse in terms of clutter (0.028 vs 0.020).

Participants
We recruited 20 student participants (4 male), aged 20 to 36
(mean 26.7, s.d. 5.2). They had 2 to 8 years of experience
with smartphones (mean 4.3, s.d. 1.8). Participants were re-
quired to not have prior experience with Windows Phone de-
vices. Two participants were left handed. Participants were
compensated with a cinema ticket.

Apparatus, Procedure, and Experimental Design
We implemented a logging application to display the menus
and collect performance information on a Nexus 5 smart-
phone running Android 4.4.3.

Participants performed 275 trials with each menu. In each
trial, they were shown a textual stimulus with the target name.
After tapping to dismiss the stimulus, the first page of the
current menu was shown. Participants had to navigate to and
tap the appropriate icon. A hint button was available if they
forgot the stimulus. The times of all taps and swipes were
logged, along with any incorrect selections. The different
apps were shown as stimuli between 1 and 25 times, depend-
ing on their usage probability. We used a smoothed version of
the distribution used to train the optimiser, in order to increase
the number of applications with more than 1 selection.

Participants performed the experiment while seated in a quiet
room. They were asked to hold the phone in their non-
dominant hand and tap with the index finger of their dominant
hand. Order of conditions was counterbalanced.

After this, participants were shown images of the full lay-
outs and asked to rate them from 1 to 5 in terms of overall
aesthetic quality, use of colour, composition logic, and sym-
metry. They were also asked to indicate a preferred layout.

Results
As our principal performance metric, we use the average se-
lection time over all trials, measured from the tap to dismiss
the stimulus to the tap on the correct icon. We filtered out
trials with selection errors or hint requests.

Figure 5 shows our results and the first page of each of the
designs. Over all trials, there is no significant difference be-

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

550

Optimised Baseline

All All except first

M
ea

n
se

le
ct

io
n

tim
e

(m
s)

2000

2500

3000

3500 Optimised
Baseline

Figure 5: End-User Study. Left: Homescreens of the opti-
mised and baseline designs. Right: Average selection times
(95% CIs). The optimised design was significantly faster
when the first selection for each app was excluded.

tween the average selection times between the two menus
(paired t-test, t(19) = −0.95, p > 0.05).

However, when the first selection for each app in each con-
dition is removed from consideration, the difference in se-
lection time between the menus is significant (paired t-test,
t(19) = −2.67, p < 0.05). This removal is justified given
that users were mostly familiarising with the menus during
the first selections. We also analysed only the latter half of
trials for each app, to see if the learning benefit continued to
grow. However, the results when doing this were very similar.
This suggests that the majority of the learning takes place on
the first selection. This result matches with our models that
predict expert performance rather than that of novices.

For the aesthetic ratings, we found no significant differ-
ences between the overall ratings and logic of composition
scores across the designs (Wilcoxon signed rank test, Z =
−1.80,−1.79, p > 0.05). However, users rated the use of
colour in the optimised design significantly higher than the
baseline (Z = 2.38, p < 0.05), but the level of symmetry sig-
nificantly lower (Z = −2.65, p < 0.05).

Half (10) of the 20 users expressed a preference for the op-
timised design over the baseline. Several participants noted
that they disliked one or both designs because the menus did
not prioritise the apps they themselves used. This reflects the
app usage dataset, which is several years old.

Summary
To summarise, the optimiser was able to produce a signifi-
cant performance benefit over a realistic baseline design. The
observed differences were largely predicted by our models.

STUDY 2: DESIGN STUDY WITH A LIVE SYSTEM
To evaluate Sketchplorer as an integrated tool, we conducted
a design study with trained designers. We aimed to evaluate
whether Sketchplorer is effective in supporting creativity and
problem-solving in sketching. We were interested in design-
ers’ insight and impressions, and not on validation of pro-
duced designs, as this had been investigated in the previous

Figure 6: Designer Study. We evaluated Sketchplorer with 10
trained designers. Participants completed design tasks while
using the different features supported by the design tool.

study. We did not direct them to use the optimiser’s sug-
gestions but were interested in seeing if this would happen
spontaneously.

Study Design
We recruited a total of 10 participants (2 female), age ranging
from 22 to 40 years (mean 29.4). All participants, except one,
had an educational or professional background in design, and
all of them had some experience using digital design tools.
Participants were compensated with two cinema tickets.

All design tasks were performed on a 55-inch (140 cm) 4K
display (3840 × 2160), with a PQ Labs G5S multitouch over-
lay. The display was tilted to a comfortable angle, and par-
ticipants performed tasks in standing position (Figure 6). The
design tool ran on a Macbook Pro (OS X 10.10). In addition,
two Macbook Pros were used for the optimisers.

Procedure: After initial training, in which participants cre-
ated simple designs and explored the tool, they were given
a ‘design brief’ for the main study task. Similar to the ex-
ample in the walkthrough, they were asked to create designs
for a blog page. There were no strict requirements, and par-
ticipants could freely decide on the exact elements, and their
details. They were asked to create a few different designs,
and could choose to make as many as they wished to, in a
time frame of 30 minutes. Participants were free to save de-
signs that were sketched with or without the aid of the op-
timiser. At the end of the task, they assigned ratings (1--5)
to their saved designs, using a custom ‘viewer’ application.
Importantly, the viewer did not reveal whether a given de-
sign had been entirely sketched by the participant, or if it was
optimiser-assisted. Finally, we gathered further information
through a questionnaire and a semi-structured interview.

Results
The study aimed at gauging whether Sketchplorer allowed de-
signers to sketch freely, and their usage of different features
the tool provided. On reviewing participants’ list of saved de-
signs, we found that 8 out of 10 participants had at least one
optimiser-aided design in their saved list. Additionally, par-
ticipant 10 stated to have borrowed an idea from the optimiser

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

551

ID N(Saved) N(Recolour) N(Fix) N(Global)
1 3 0 0 3
2 5 0 0 2
3 5 3 1 0
4 5 0 2 2
5 4 1 0 1
6 3 0 0 0
7 4 0 3 0
8 8 0 0 5
9 10 2 3 4

10 1 0 0 1

N(Saved) : Total number of saved layouts
N(Recolour) : Saved layouts with recolour-suggestions
N(Fix) : Saved layouts with fix-suggestions
N(Global) : Saved layouts with global-suggestions

Table 2: Summary of features used by each participant in
Study 2. 9 out of 10 designers took advantage of suggestions
offered by the optimiser, to achieve their final designs.

suggestions, but recreated it manually in his own sketch. On
average, participants perceived optimiser-assisted designs to
be equally good as designs they sketched alone. Table 2 sum-
marises the optimiser-features used by the participants, in the
saved versions.

Responses to the questionnaire and interview session were
encouraging for Sketchplorer. Apart from minor technical
glitches, participants commented that they could sketch out
their ideas quickly and freely, and the multitouch interactions
were easy and straightforward. The ability to have a large
touch-friendly canvas was appreciated. All participants stated
that they would certainly prefer a visual timeline in such de-
sign tools, over traditional save-dialogs, and such a feature
would be useful in future tools.

With regards to the optimiser-related features, participants es-
pecially liked the explore option. They found the suggestions
to be distinctly different, useful, and indicated that it would
help them while designing. One commented, ”I kind of like
how the suggestions turn my approach upside down, and I
can get hints from there”. There was a split between par-
ticipants while rating the usefulness of fix and recolour dur-
ing the given design task. A few participants found some
of the recolour suggestions “so 90s” or flashy, and wished
that the suggestions would be more subtle. One participant
commented that they would rather explore new and different
ideas, than ‘fix’ existing ones. However, participants also in-
dicated that recolouring and fixing would help them in future
design activities.

DISCUSSION
This paper has studied a new concept interactive design op-
timisation, backed by predictive models, and integrated to a
sketching tool. By inferring design tasks implicitly, and by
using a combination of exploration and exploitation, a lay-
out optimiser can complement the sketching activities of a
designer in real time, and enable her to explore larger design
spaces without having to divert their attention to the optimisa-
tion process. During sketchploration, the designer–optimiser
system is continuously both sketching (or, in optimiser terms,
exploiting) and exploring. Crucially, the optimiser is not sug-

gesting just anything for the designer. The predictive models
of the optimiser try to “pull” the designer towards usable and
aesthetic designs. A designer can reject designs that are un-
satisfactory for some reasons that the optimiser may not in-
clude in its objective function. This way, the designer and
the optimiser can iteratively approach a region of good de-
signs without communicating an objective function. We are
not aware of a similar approach in the past.

Results from two studies provide first evidence for the con-
cept. Study 1 exposed end-users to a visual layout generated
by the optimiser, comparing it against a commercial baseline
design. The results were favourable, the optimised design
was significantly better in average selection time, when mea-
sured after the first selection of an app. Colour harmony was
rated higher, but the layout less harmonic. It is intriguing to
note that the obtained data are mostly in alignment with the
predictions made by the models.

Study 2 gauged Sketchplorer’s ability to provide designers
with a sketching environment conducive to sketchploration,
and gathered insights about the different features. Most de-
signers in our study added some of the optimisers’ designs to
their saved list of designs, used the features in their process,
and rated the optimiser’s outputs high. They in particular ap-
preciated the explore feature. Given that the participants had
educational and even professional background in design, we
consider this a notable achievement.

Overall, we see sketchploration as a promising concept; one
that can lead to not only empowering designers, but also to
systematically improving usability and aesthetics, and raising
the bar of design.

While our work lays the foundation for sketchploration, it
also uncovers many challenges and opens up opportunities
for future efforts. First, while this paper covers visual aspects
of designs, it does not capture semantics or the dynamicity
of interactions that interfaces afford. To further improve ex-
ploratory results, integrating these aspects is desirable. Sec-
ond, our optimisation techniques are highly dependent on
well-validated models; further development of accurate pre-
dictive models is a key factor to improvements in results.
Third, although the optimiser’s results were mostly good, we
note that its performance was limited to designs with ten or
fewer elements. Layout optimisation for HCI is a combina-
torially challenging task that cannot be directly solved with
standard methods. Finally, it can be beneficial to allow deeper
exploration into design spaces, and provide designers with
detailed insights of the entire space. In optimisation terms,
the optimisation landscape could be visualised to allow more
informed choices.

ACKNOWLEDGEMENTS
The project has received funding from the Academy of Fin-
land project COMPUTED and the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement 637991).
Among others, we would like to thank Andreas Karrenbauer
and Gilles Bailly for their suggestions and comments, and
Olli Savisaari and Perttu Lähteenlahti for their assistance.

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

552

REFERENCES
1. Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh.

2008. ILoveSketch: As-natural-as-possible Sketching
System for Creating 3D Curve Models. In Proceedings
of the 21st Annual ACM Symposium on User Interface
Software and Technology (UIST ’08). ACM, New York,
NY, USA, 151–160. DOI:
http://dx.doi.org/10.1145/1449715.1449740

2. Gilles Bailly, Antti Oulasvirta, Timo Kötzing, and
Sabrina Hoppe. 2013. MenuOptimizer: Interactive
Optimization of Menu Systems. In Proceedings of the
26th Annual ACM Symposium on User Interface
Software and Technology (UIST ’13). ACM, New York,
NY, USA, 331–342. DOI:
http://dx.doi.org/10.1145/2501988.2502024

3. Helen Y. Balinsky. 2006. Evaluating interface aesthetics:
measure of symmetry. In Electronic Imaging 2006.
International Society for Optics and Photonics, 607–608.

4. Helen Y. Balinsky, Anthony J. Wiley, and Matthew C.
Roberts. 2009. Aesthetic Measure of Alignment and
Regularity. In Proceedings of the 9th ACM Symposium
on Document Engineering (DocEng ’09). ACM, New
York, NY, USA, 56–65. DOI:
http://dx.doi.org/10.1145/1600193.1600207

5. Rainer E. Burkhard and J. Offerman. 1977. Entwurf von
schreibmaschinentastaturen mittels quadratischer
zuordnungsprobleme. Operations Res 21 (1977),
B121–B132.

6. Bill Buxton. 2007. Sketching User Experiences: Getting
the Design Right and the Right Design. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

7. Daniel Cohen-Or, Olga Sorkine, Ran Gal, Tommer
Leyvand, and Ying-Qing Xu. 2006. Color
Harmonization. In ACM SIGGRAPH 2006 Papers
(SIGGRAPH ’06). ACM, New York, NY, USA,
624–630. DOI:
http://dx.doi.org/10.1145/1179352.1141933

8. Nigel Cross. 2004. Expertise in design: an overview.
Design studies 25, 5 (2004), 427–441.

9. Amine Drira, Henri Pierreval, and Sonia Hajri-Gabouj.
2007. Facility layout problems: A survey. Annual
Reviews in Control 31, 2 (2007), 255–267.

10. Karim El Batran and Mark D. Dunlop. 2014. Enhancing
KLM (Keystroke-level Model) to Fit Touch Screen
Mobile Devices. In Proceedings of the 16th
International Conference on Human-computer
Interaction with Mobile Devices & Services
(MobileHCI ’14). ACM, New York, NY, USA, 283–286.
DOI:http://dx.doi.org/10.1145/2628363.2628385

11. Steven K. Feiner. 1988. A Grid-based Approach to
Automating Display Layout. In Proceedings on
Graphics Interface ’88. Canadian Information
Processing Society, Toronto, Ont., Canada, Canada,
192–197.
http://dl.acm.org/citation.cfm?id=102313.102339

12. Krzysztof Gajos and Daniel S. Weld. 2004. SUPPLE:
Automatically Generating User Interfaces. In
Proceedings of the 9th International Conference on
Intelligent User Interfaces (IUI ’04). ACM, New York,
NY, USA, 93–100. DOI:
http://dx.doi.org/10.1145/964442.964461

13. Mark D. Gross and Ellen Yi-Luen Do. 1996. Ambiguous
Intentions: A Paper-like Interface for Creative Design.
In Proceedings of the 9th Annual ACM Symposium on
User Interface Software and Technology (UIST ’96).
ACM, New York, NY, USA, 183–192. DOI:
http://dx.doi.org/10.1145/237091.237119

14. Pierre Hansen and Nenad Mladenović. 2001. Variable
neighborhood search: Principles and applications.
European journal of operational research 130, 3 (2001),
449–467.

15. Marc Hassenzahl. 2008. The Interplay of Beauty,
Goodness, and Usability in Interactive Products.
Hum.-Comput. Interact. 19, 4 (Dec. 2008), 319–349.
DOI:
http://dx.doi.org/10.1207/s15327051hci1904_2

16. Eric Horvitz. 1999. Principles of Mixed-initiative User
Interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’99). ACM,
New York, NY, USA, 159–166. DOI:
http://dx.doi.org/10.1145/302979.303030

17. Gabe Johnson, Mark D. Gross, Jason Hong, and Ellen
Yi-Luen Do. 2009. Computational Support for
Sketching in Design: A Review. Found. Trends
Hum.-Comput. Interact. 2, 1 (Jan. 2009), 1–93. DOI:
http://dx.doi.org/10.1561/1100000013

18. Levent Burak Kara, Chris M. D’Eramo, and Kenji
Shimada. 2006. Pen-based Styling Design of 3D
Geometry Using Concept Sketches and Template
Models. In Proceedings of the 2006 ACM Symposium on
Solid and Physical Modeling (SPM ’06). ACM, New
York, NY, USA, 149–160. DOI:
http://dx.doi.org/10.1145/1128888.1128909

19. Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
and George Fitzmaurice. 2014. Kitty: Sketching
Dynamic and Interactive Illustrations. In Proceedings of
the 27th Annual ACM Symposium on User Interface
Software and Technology (UIST ’14). ACM, New York,
NY, USA, 395–405. DOI:
http://dx.doi.org/10.1145/2642918.2647375

20. Kenneth L. Kelly. 1965. Twenty-two colors of maximum
contrast. Color Engineering 3, 26 (1965), 26–27.

21. David E. Kieras and Anthony J. Hornof. 2014. Towards
Accurate and Practical Predictive Models of
Active-vision-based Visual Search. In Proceedings of
the 32Nd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY,
USA, 3875–3884. DOI:
http://dx.doi.org/10.1145/2556288.2557324

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

553

http://dx.doi.org/10.1145/1449715.1449740
http://dx.doi.org/10.1145/2501988.2502024
http://dx.doi.org/10.1145/1600193.1600207
http://dx.doi.org/10.1145/1179352.1141933
http://dx.doi.org/10.1145/2628363.2628385
http://dl.acm.org/citation.cfm?id=102313.102339
http://dx.doi.org/10.1145/964442.964461
http://dx.doi.org/10.1145/237091.237119
http://dx.doi.org/10.1207/s15327051hci1904_2
http://dx.doi.org/10.1145/302979.303030
http://dx.doi.org/10.1561/1100000013
http://dx.doi.org/10.1145/1128888.1128909
http://dx.doi.org/10.1145/2642918.2647375
http://dx.doi.org/10.1145/2556288.2557324

22. Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres,
Maxine Lim, Salman Ahmad, Scott R. Klemmer, and
Jerry O. Talton. 2013. Webzeitgeist: Design Mining the
Web. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’13). ACM,
New York, NY, USA, 3083–3092. DOI:
http://dx.doi.org/10.1145/2470654.2466420

23. James A. Landay and Brad A. Myers. 1995. Interactive
Sketching for the Early Stages of User Interface Design.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’95). ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 43–50. DOI:
http://dx.doi.org/10.1145/223904.223910

24. Lissa Light and Peter Anderson. 1993. Designing better
keyboards via simulated annealing. (1993).

25. James Lin, Mark W. Newman, Jason I. Hong, and
James A. Landay. 2000. DENIM: Finding a Tighter Fit
Between Tools and Practice for Web Site Design. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’00). ACM, New
York, NY, USA, 510–517. DOI:
http://dx.doi.org/10.1145/332040.332486

26. Simon Lok and Steven Feiner. 2001. A survey of
automated layout techniques for information
presentations. Proceedings of SmartGraphics 2001
(2001).

27. Simon Lok, Steven Feiner, and Gary Ngai. 2004.
Evaluation of Visual Balance for Automated Layout. In
Proceedings of the 9th International Conference on
Intelligent User Interfaces (IUI ’04). ACM, New York,
NY, USA, 101–108. DOI:
http://dx.doi.org/10.1145/964442.964462

28. Scott I. MacKenzie. 1992. Fitts’ law as a research and
design tool in human-computer interaction.
Human–Computer Interaction 7, 1 (1992), 91–139.

29. Barbara J. Meier, Anne Morgan Spalter, and David B.
Karelitz. 2004. Interactive Color Palette Tools. IEEE
Comput. Graph. Appl. 24, 3 (May 2004), 64–72. DOI:
http://dx.doi.org/10.1109/MCG.2004.1297012

30. Mark W. Newman and James A. Landay. 2000.
Sitemaps, Storyboards, and Specifications: A Sketch of
Web Site Design Practice. In Proceedings of the 3rd
Conference on Designing Interactive Systems:
Processes, Practices, Methods, and Techniques (DIS
’00). ACM, New York, NY, USA, 263–274. DOI:
http://dx.doi.org/10.1145/347642.347758

31. Peter O’Donovan, Aseem Agarwala, and Aaron
Hertzmann. 2014. Learning Layouts for
Single-PageGraphic Designs. Visualization and
Computer Graphics, IEEE Transactions on 20, 8 (2014),
1200–1213.

32. Peter O’Donovan, Aseem Agarwala, and Aaron
Hertzmann. 2015. DesignScape: Design with Interactive

Layout Suggestions. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems (CHI ’15). ACM, New York, NY, USA,
1221–1224. DOI:
http://dx.doi.org/10.1145/2702123.2702149

33. Antti Oulasvirta, Anna Reichel, Wenbin Li, Yan Zhang,
Myroslav Bachynskyi, Keith Vertanen, and Per Ola
Kristensson. 2013. Improving Two-thumb Text Entry on
Touchscreen Devices. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’13). ACM, New York, NY, USA, 2765–2774.
DOI:http://dx.doi.org/10.1145/2470654.2481383

34. Ruth Rosenholtz, Yuanzhen Li, and Lisa Nakano. 2007.
Measuring visual clutter. Journal of vision 7, 2 (2007),
17.

35. Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin
Zhong, and Phillip Kortum. 2011. LiveLab: Measuring
Wireless Networks and Smartphone Users in the Field.
SIGMETRICS Perform. Eval. Rev. 38, 3 (Jan. 2011),
15–20. DOI:
http://dx.doi.org/10.1145/1925019.1925023

36. Surya P. Singh and Renduchintala RK Sharma. 2006. A
review of different approaches to the facility layout
problems. The International Journal of Advanced
Manufacturing Technology 30, 5-6 (2006), 425–433.

37. Ivan E. Sutherland. 1963. Sketchpad: A Man-machine
Graphical Communication System. In Proceedings of
the May 21-23, 1963, Spring Joint Computer
Conference (AFIPS ’63 (Spring)). ACM, New York, NY,
USA, 329–346. DOI:
http://dx.doi.org/10.1145/1461551.1461591

38. Michael Terry, Elizabeth D. Mynatt, Kumiyo Nakakoji,
and Yasuhiro Yamamoto. 2004. Variation in Element
and Action: Supporting Simultaneous Development of
Alternative Solutions. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’04). ACM, New York, NY, USA, 711–718. DOI:
http://dx.doi.org/10.1145/985692.985782

39. Marc Van Droogenbroeck and Sébastien Piérard. 2011.
Object Descriptors Based on a List of Rectangles:
Method and Algorithm. In Proceedings of the 10th
International Conference on Mathematical Morphology
and Its Applications to Image and Signal Processing
(ISMM’11). Springer-Verlag, Berlin, Heidelberg,
155–165. http:
//dl.acm.org/citation.cfm?id=2023043.2023061

40. L.G. Williams. 1966. A Study of Visual Search Using
Eye Movement Recordings. Technical Report. DTIC
Document.

41. Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li.
2007. Gestures Without Libraries, Toolkits or Training:
A $1 Recognizer for User Interface Prototypes. In
Proceedings of the 20th Annual ACM Symposium on
User Interface Software and Technology (UIST ’07).
ACM, New York, NY, USA, 159–168. DOI:
http://dx.doi.org/10.1145/1294211.1294238

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

554

http://dx.doi.org/10.1145/2470654.2466420
http://dx.doi.org/10.1145/223904.223910
http://dx.doi.org/10.1145/332040.332486
http://dx.doi.org/10.1145/964442.964462
http://dx.doi.org/10.1109/MCG.2004.1297012
http://dx.doi.org/10.1145/347642.347758
http://dx.doi.org/10.1145/2702123.2702149
http://dx.doi.org/10.1145/2470654.2481383
http://dx.doi.org/10.1145/1925019.1925023
http://dx.doi.org/10.1145/1461551.1461591
http://dx.doi.org/10.1145/985692.985782
http://dl.acm.org/citation.cfm?id=2023043.2023061
http://dl.acm.org/citation.cfm?id=2023043.2023061
http://dx.doi.org/10.1145/1294211.1294238

42. Yin Yin Wong. 1992. Rough and Ready Prototypes:
Lessons from Graphic Design. In Posters and Short
Talks of the 1992 SIGCHI Conference on Human
Factors in Computing Systems (CHI ’92). ACM, New
York, NY, USA, 83–84. DOI:
http://dx.doi.org/10.1145/1125021.1125094

43. Shengxiang Yang and Xin Yao. 2008. Population-based
incremental learning with associative memory for
dynamic environments. Evolutionary Computation,
IEEE Transactions on 12, 5 (2008), 542–561.

44. Yeonsoo Yang and Scott R. Klemmer. 2009. Aesthetics
Matter: Leveraging Design Heuristics to Synthesize
Visually Satisfying Handheld Interfaces. In CHI ’09
Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’09). ACM, New York, NY, USA,
4183–4188. DOI:
http://dx.doi.org/10.1145/1520340.1520637

45. Shumin Zhai, Michael Hunter, and Barton A. Smith.
2002. Performance Optimization of Virtual Keyboards.
Human–Computer Interaction 17, 2-3 (2002), 229–269.

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

555

http://dx.doi.org/10.1145/1125021.1125094
http://dx.doi.org/10.1145/1520340.1520637

	Introduction
	Prior Art: Sketching Tools and UI Optimisation
	Sketching Tools and Interaction Techniques
	Heuristic and Data-Driven Methods for Layout Generation
	Model-based Optimisation

	Walkthrough and Design Overview
	Walkthrough: Designing a Blog Page
	Overview of Interactions

	Predictive Models for Interactive Layouts
	Overview: The Colour Patches Task
	Visual Clutter
	Visual Search
	Target Acquisition
	Grid Quality
	Colour Harmony
	Scope and Limitations

	Dynamic Layout Optimisation during Sketching
	Definition: Layout Design Task
	Objective Function
	Inferring the Design Task
	Dynamic Optimisation
	Filtering and Diversification of Results

	System Implementation
	Study 1: End-User Evaluation
	Optimisation Task
	Participants
	Apparatus, Procedure, and Experimental Design
	Results
	Summary

	Study 2: Design Study with a Live System
	Study Design
	Results

	Discussion
	Acknowledgements
	REFERENCES

