
Sparse Selection of Training Data for Touch Correction
Systems

Daryl Weir, Simon Rogers
University of Glasgow

18 Lilybank Gardens, Glasgow, G12 8QQ
darylw@dcs.gla.ac.uk,

Simon.Rogers@glasgow.ac.uk

Daniel Buschek
University of Munich

Amalienstr. 17, 80333 Munich, Germany
buschek@cip.ifi.lmu.de

ABSTRACT
Touch offset models which improve input accuracy on mobile
touch screen devices typically require the use of a large num-
ber of training points. In this paper, we describe a method
for selecting training points such that high performance can
be attained with fewer data. We use the Relevance Vector
Machine (RVM) algorithm, and show that performance im-
provements can be obtained with fewer than 10 training ex-
amples. We show that the distribution of training points is
conserved across users and contains interesting structure, and
compare the RVM to two other offset prediction models for
small training set sizes.

Author Keywords
Touch; Machine Learning; Sparse Methods

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
Input devices and strategies (e.g mouse, touchscreen)

INTRODUCTION
Recently, several approaches have been proposed to improve
touch accuracy on small devices [4, 3, 7, 9]. Touch accuracy
is often low in this domain for various reasons including, for
example, the ‘fat finger effect’, occlusion of the target when
performing the touch, and different mental models used by
users when targeting [5, 6]. The approaches proposed can
be split into two general categories: those that are population
based, and those that are user based. Population based meth-
ods (such as [3]) take touch data from populations of users
and use this to train models that apply a (hopefully) correc-
tive offset to a touch input. Individual based models [9] use
data from just one user. [9] showed that these generally out-
perform models trained on data from several users, due to
user-specific touch offsets.

One problem with all of these approaches is the need for
touch data on which to train the models. Data from e.g. typ-
ing is not typically acceptable as we must be sure where the
user was aiming. In [4], a touch-based game was used, whilst
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
MobileHCI ’13, August 27 - 30 2013, Munich, Germany
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2273-7/13/0. . . $15.00.

[9] used a bespoke calibration application. The requirement
for training data represents a hurdle for the use of such meth-
ods within mobile devices. The problem is particularly acute
for individual based models as we cannot rely on data from
other people – all training data must come from the current
user. Given that the phone may be used in multiple modes
(portrait, landscape, one hand, two hand, thumb, finger, etc),
and that each mode will require its own set of training data,
the burden on the user becomes far too onerous.

In this paper, we investigate whether it is possible to train
individual offset models with very small quantities of data
(i.e. fewer than 10 calibration touches). We are not inter-
ested, in this study, in finding out how many touches users
might tolerate, although this is clearly important. Rather, we
are looking to push the number required to train touch mod-
els down as low as possible. As well as answering the ques-
tion ’how many points are required’, we will also compare
different touch models to see which models perform best in
this small data setting. In particular, we propose that it is
very important that any touch model, when presented with a
very small set of calibration touches shouldn’t make the touch
problem worse.

Our work here has two strands. In the first, we use recorded
touch data to investigate, in a perfect scenario, how few cal-
ibration touches can be used to define a model. For this,
we use the Relevance Vector Machine (RVM) [8] as it is a
regression algorithm (suitable for the touch offset problem)
that produces a solution that is sparse in basis vectors (cor-
responding to training points). The solution is therefore de-
fined with respect to a (typically) small subset of the total
training data. This represents an ideal scenario as we perform
the analysis on a large touch dataset. However, it provides an
indication into how few a number of touches are required to
produce improvements in touch accuracy of the baseline of no
offset model. The results suggest that good performance can
be achieved with fewer than 10 training points and that the
location of the chosen calibration points is highly conserved
across different users.

The second strand involves investigating how rapidly it is pos-
sible to train models starting from no data. In other words,
if we sequentially add more data points to the model, how
rapidly does the error drop? In [9], improvement was almost
immediate when a Gaussian Process regression model was
trained using the recorded touch position as an input and the
intended touch position as an output. Here, we perform a sim-
ilar analysis but focus in on the very small dataset sizes and

MOBILE HCI 2013 – TOUCH AND MULTI-MODAL USER INTERFACES AUGUST 30th, 2013 – MUNICH, GERMANY

404

look at data from different devices and different input algo-
rithms. We discover that the RVM can get excellent perfor-
mance even with datasets so small that it would be impossible
to train existing parametric models.

The remainder of the paper is structured as follows. In the
next section we describe the regression models used in this
work. Following that, we present the results of our two anal-
ysis strands and then finish with some discussions and con-
clusions.

OUR MODEL
The relevance vector machine (RVM) is a technique for ob-
taining sparse regression and classification functions by lin-
early weighting a small number of basis functions from a
large set of candidates. The RVM is a specialisation of a more
general family of machine learning techniques called sparse
Bayesian models. Given a set of observed inputs x, the RVM
makes predictions of the form

y(x) =
M∑

m=1

wmφm(x).

For the touch offset problem, x are the sensed touch loca-
tions, y(x) is the approximation to the offset between the
sensed and intended location, φm(x) are the basis functions
and wm are the weights. If we have a set of N training
points {xn, tn}Nn=1, the RVM operates by finding values for
the weights such that y(x) generalises well to test data but
relatively few of the weights are non-zero. In this way, only a
small proportion of the basis functions are used.

Touch Data
We evaluated the RVM on an existing set of touch data [2].
This data was gathered in a user study where users were
shown a series of 300 crosshair targets on a smartphone and
asked to touch them as accurately as possible. Participants
were seated and held the phone in one hand, touching using
the thumb on that hand. The dataset contains touches from 30
subjects on 13 different smartphones. All subjects repeated
the study on multiple phones, but not all subjects used all
phones. In this paper, we analyse 43200 touches from the 3
phones for which most data was collected — the iPhone 4 (25
subjects), Nokia N9 (24) and Nokia Lumia 900 (22).

Making Predictions
To train an RVM using this data, we chose the basis func-
tions φm(x) = K(x,xm), where K(x,xm) is the radial ba-
sis function kernel between the test point x and the training
example xm. In this way, we have a number of basis func-
tions equal to the number of training points — 300 for each
session. The basis functions given non-zero weights by the
RVM (the ’relevance vectors’) are those points which are im-
portant for making predictions of the intended target for new
test touches.

The predictive function from the RVM is one-dimensional —
that is, although (x1, x2) training pairs are used to compute
the basis functions, the RVM can only predict either x1 or
x2. Thus, we need to train two models for each session, each

of which will have different relevance vectors. This is poten-
tially interesting, as it allows us to to find which areas of the
screen we need to collect data from to predict each of the di-
mensions, and also which points are used to predict both x1
and x2.

RESULTS

Predictive Performance
For each session, we train the two RVMs and evaluate their
predictive performance. We perform 5-fold cross validation,
holding out 60 touches for testing at each step. Our perfor-
mance metric is the RMS error between the predicted lo-
cation of the RVM and the intended touch location (posi-
tion of the crosshair in the trial). As a baseline, we com-
pare against a second order polynomial of the form y =
w0+w1x1+w2x

2
1+w3x2+w4x

2
2, fitted using least squares

regression. This allows us to investigate how a sparse solu-
tion performs in comparison to a model learned on all the
available data.

In [3] the authors learn an offset function using a fifth order
polynomial. However, we found that the typical number of
relevance vectors was small enough that it was not possible
to train a well conditioned fifth order model (such a model
would require 11 datapoints at least, due to the 11 features
required). The number of relevance vectors was typically less
than 5, hence our choice of a quadratic baseline, which can
be trained with 5 points.

Our results are summarised in Table 1. We present results for
the three most common devices in the dataset. For each de-
vice, the table shows the mean number of points n selected
by the RVM to predict each dimension, along with the aver-
age RMS error across all sessions for the two models. We
also show the RMS error between the recorded and intended
locations in the absence of any correction.

Number of Points Required – the Ideal Case
We can see that for each device, the RVM typically selects
between 2 and 5 relevance vectors for each dimension. That
is, we need to evaluate the kernel function at fewer than 10
training points from the original 240 to make good predic-
tions on test data. We see that the RVM and the polynomial
both perform better than the baseline. This difference is sta-
tistically significant (paired t-test, p < 0.05). We also see that
the RVM provides a small performance improvement over the
polynomial model. For all but the x1 conditions on the iPhone
and N9, this improvement is also significant. The RVM per-
forms as well or better than a model with many times more
training data. Note that this minimum number of points is
something that we may not be able to meet in practice as the
RVM analysis has many points available to start with — a
situation that is clearly not feasible in practice.

The RVM analysis also allows us to explore where these
points are positioned in the input space. This can give insight
into which areas of the screen are important when learning
the offset function. In order to do this, we use a kernel den-
sity estimate to produce a probability density function of the

MOBILE HCI 2013 – TOUCH AND MULTI-MODAL USER INTERFACES AUGUST 30th, 2013 – MUNICH, GERMANY

405

Phone Dimension n RVM Quadratic (all data) Baseline (No correction)

iPhone 4 x1 2.28 0.0289 0.029 0.0444
x2 3.28 0.0435 0.0444 0.0532

Nokia N9 x1 2.52 0.0363 0.0365 0.0523
x2 3.02 0.0371 0.0375 0.0538

Nokia Lumia 900 x1 2.70 0.0307 0.0313 0.0456
x2 4.65 0.0335 0.0340 0.0431

Table 1. Average RMS errors between the predicted and intended touch location for various phones and predictive models.

point location for each phone type. For a given phone, we col-
lect all relevance vectors extracted for all users and sessions
on that phone, and place a narrow Gaussian at each of these
points. To estimate the density at a new point x′, we take the
average of all of the training point densities evaluated at x′.
By evaluating the density estimate at each point in a grid, we
can visualise the surface over the screen. Figure 2 shows the
density of the points used to make predictions on the iPhone
4 for both horizontal and vertical co-ordinate predictions.

There is a clear structure evident, showing which areas of the
screen are important for making predictions. It is interesting
to note that the points which are most important for predicting
x1 are distributed quite differently from those for x2. For
predicting x1, the most important areas are at the right and left
edges of the screen, whereas to predict x2 the most important
points are in the corners.

Generalising to New Users
The analysis above represents an ‘ideal world’ situation, in
which we start with a fairly large dataset of touches for a user
and use the RVM to extract the relevant training points. This
is not the desired use case in general — we wish to learn a
model for a new user which requires only a small number of
training points.

An algorithm designed to work with a small training set needs
to satisfy two properties. First, it must be stable. That is,
when there is very little data (less than 5 examples) the pre-
dictions should not be worse than the baseline where no offset
correction is performed. Secondly, the performance should
improve quickly as training data is added. We have seen that
the RVM produces good predictive performance using a small
set of basis vectors, so we now investigate the performance of
the algorithm when starting from no data.

To conduct the analysis, we take the training examples for a
user, permute them into a random order, and add them to the
training set in small increments. We train an RVM at each
increment and compute the predictive performance on a held
out test set. In addition, we also train a quadratic model us-
ing the same points and a least squares regression based on
the kernel matrix passed to the RVM. We evaluate the per-
formance of the models using 1, 2, 5, 10, 15 and 20 training
points. Our performance measure is the root mean square
error between the model predictions (x′1, x

′
2) and the true po-

sitions (x1, x2).

Figure 1 shows the results averaged across all users and
phones. We rescale device coordinates to a unit square to

5 10 15 20
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Number of Training Points

R
M

S
 T

e
s
t

E
rr

o
r

Test Error for Small Training Sets

RVM
Kernel Regression
Quadratic (User)
Baseline

Figure 1. RMS error as a function of training set size for three prediction
models. Results show mean and standard error across all subjects. The
baseline is a quadratic model trained on the data for all subjects.

allow cross-device comparison. The performance value for
each user was obtained by averaging the RMSE over 20
restarts of the process described above. This helps ensure we
use a variety of subsets of the training data.

The plotted curves show the mean test RMS and standard er-
ror across all users. To provide a comparison to a more tra-
ditional population approach, we also fitted a quadratic pre-
dictor based on all of the collected training data. The perfor-
mance of this baseline is shown by the dashed line. We can
see that the RVM error is equivalent to the baseline with only
5 training points, and better with 10. The parametric mod-
els, by contrast, have high error for these values of n. The
quadratic model in particular requires 5 features and so for
fewer than 5 training points the model is poorly conditioned
and the error is very large. For the RVM, the average im-
provement over the baseline at 10 training points was small
but statistically significant (paired t-test, p < 0.05). This
analysis shows the power of the RVM for very quickly build-
ing offset models that offer an improvement over commercial
hardware and existing correction strategies.

It is interesting to note that the user specific quadratic model
exceeds the performance of the population model for 20 or
more training points. This is in line with the findings of [9],
which suggested that user specific offset models performed
better than population based techniques. When all the avail-
able training data are used, the RVM and quadratic models
give similar performance. However, the RVM approaches
the optimal performance more quickly, with little improve-
ment after 50 training points, whereas the quadratic model
improves steadily as data are added.

MOBILE HCI 2013 – TOUCH AND MULTI-MODAL USER INTERFACES AUGUST 30th, 2013 – MUNICH, GERMANY

406

0

0.5

1

0

0.5

1
0

0.5

1

1.5

XY

(a) X Relevance Vectors

0

0.5

1

0

0.5

1
0

0.5

1

1.5

XY

(b) Y Relevance Vectors

Figure 2. Kernel density estimates for the distribution of relevance vectors on the iPhone 4 in portrait orientation. Higher values of the distribution
indicate the location of points important in predicting touch offset surfaces. The important points for predicting X and Y offsets are quite different.

DISCUSSION AND FUTURE WORK
The RVM allows us to train offset models with a very small
number of training points. This is potentially very useful to
train these models in real time as a new user interacts with a
device. User specific offset models are desirable [9] but ex-
isting offset correction systems have used hundreds or thou-
sands of training points — too many for a typical calibration.
The RVM offers a solution to this problem, since it is much
more feasible to collect 5 or 10 training touches than 200.

We have also seen that the RVM can be used to produce a dis-
tribution of training point locations for these models. These
distributions are potentially of interest for interaction design.
The points where the distributions are peaked are important
precisely because they are harder to model, and so this could
be used to inform the placement of interface elements.

The small number of training points required by our model
suggests the offset surface is quite simple. This may be be-
cause the data set used consists of taps from only one thumb.
Two thumb tapping behaviour is likely to be more complex,
and studying this is an important direction for future work.
Touch behaviour changes based on the hand used, and also
based on posture and grip[1]. A practical deployment of our
system would need to be able to identify the current usage
mode. [2] showed the currently used hand could be inferred
from tapping behaviour — this might be used with our algo-
rithm to determine when to train a new offset model.

CONCLUSION
In this paper, we have investigated the use of the RVM al-
gorithm to learn a touch offset function using a sparse set of
training data. We used the RVM to learn a minimal represen-
tation based on a full set of data, and explored the distribution
of the important examples. We also studied the use of the al-
gorithm to quickly learn offset models starting from no data.
We found small but significant improvements over a polyno-
mial baseline after only 5 or 10 training points.

The RVM, and sparse methods in general, are a powerful tool
for improving the quality of touch screen interaction. This

paper has demonstrated the utility and potential of this algo-
rithm to quickly produce user specific touch models.

ACKNOWLEDGMENTS
Nokia provided equipment and funding to support this work.
Daryl Weir is supported by a SICSA prize scholarship.

REFERENCES
1. Azenkot, S., and Zhai, S. Touch behavior with different

postures on soft smartphone keyboards. In MobileHCI
’12, 251–260.

2. Buschek, D., Rogers, S., and Murray-Smith, R.
User-Specific Touch Models in a Cross-Device Context.
In MobileHCI ’13, To appear.

3. Henze, N., Rukzio, E., and Boll, S. 100,000,000 taps:
Analysis and Improvement of Touch Performance in the
Large. In MobileHCI ’11, 133–142.

4. Henze, N., Rukzio, E., and Boll, S. Observational and
experimental investigation of typing behaviour using
virtual keyboards for mobile devices. In CHI ’12,
2659–2688.

5. Holz, C., and Baudisch, P. The generalized perceived
input point model and how to double touch accuracy by
extracting fingerprints. In CHI ’10, 581–590.

6. Holz, C., and Baudisch, P. Understanding touch. In CHI
’11, 2501–2510.

7. Rogers, S., Williamson, J., Stewart, C., and
Murray-Smith, R. AnglePose: robust, precise capacitive
touch tracking via 3d orientation estimation. In CHI ’11,
2575–2584.

8. Tipping, M. E. Sparse Bayesian Learning and the
Relevance Vector Machine. Journal of Machine Learning
Research 1 (2001), 211–244.

9. Weir, D., Rogers, S., Murray-Smith, R., and Lochtefeld,
M. A User-Specific Machine Learning Approach for
Improving Touch Accuracy on Mobile Devices. In UIST
’12, 465–476.

MOBILE HCI 2013 – TOUCH AND MULTI-MODAL USER INTERFACES AUGUST 30th, 2013 – MUNICH, GERMANY

407

	Introduction
	Our Model
	Touch Data
	Making Predictions

	Results
	Predictive Performance
	Number of Points Required – the Ideal Case
	Generalising to New Users

	Discussion and Future Work
	Conclusion
	Acknowledgments
	REFERENCES

